Main Article Content

Abstract

In this paper, we introduced a Henstock-type integral named N-integral of a real valued function f on a closed and bounded interval [a,b]. The set N-integrable functions lie entirely between Riemann integrable functions and Henstock-Kurzweil integrable functions. Furthermore, this new integral integrates all improper Riemann integrable functions even if they are not Lebesgue integrable. It was shown that for a Henstock-Kurzweil integrable function f on [a,b], the following are equivalent:

  1. The function f is N-integrable;
  2. There exists a null set S for which given epsilon >0 there exists a gauge delta such that for any delta-fine partial division D={(xi,[u,v])} of [a,b] we have [(phi_S(D) Gamma_epsilon) sum |f(v)-f(u)||v-u|<epsilon] where phi_S(D)={(xi,[u,v])in D:xi not in S} and [Gamma_epsilon={(xi,[u,v]): |f(v)-f(u)|<= epsilon}] and
  3. The function f is continuous almost everywhere.

 

A characterization of continuous almost everywhere functions was also given.

 

Keywords

N-integral Continuity almost everywhere Henstock-Kurzweil integral

Article Details

How to Cite
Racca, A. P., & Cabral, E. A. (2020). The N-Integral. Journal of the Indonesian Mathematical Society, 26(2), 242–257. https://doi.org/10.22342/jims.26.2.865.242-257

References

  1. bibitem{Bar} Bartle, R.G., A Modern Theory of Integration, textit{Graduate Studies in Math. 32}, Amer Math. Soc., 2001.
  2. bibitem{Cabral}
  3. Cabral, E. A. and Lee, P.Y.,A Fundamental Theorem of Calculus for the Kurzweil-Henstock Integral in $mathbb{R}^m$, {em Real Analysis Exchange}, textbf{26} (2001$slash$2002), 867--876.
  4. bibitem{Fenecios}
  5. Fenecios, J.P., Cabral, E.A., and Racca, A.P., Baire One Functions and their Sets of Discontinuity, {em Mathematica Behemica }textbf{141} (2016), 109-114.
  6. bibitem{Gor}
  7. Gordon, R. A., The Integrals of Lebegue, Denjoy, Perron, and Henstock, textit{Graduate Studies in Math. 4}, Amer. Math. Soc., 1994.
  8. bibitem{Car}
  9. Lee, C.S.Y., On Baire One Functions and Baire One Integration, Undergraduate Thesis, Nanyang Technological University, Singapore, 2001.
  10. bibitem{Lee}
  11. Lee, P.Y., Lanzhou Lectures on Henstock Integration, World Scientific Publishing, 1989.
  12. bibitem{LPY}
  13. Lee, P.Y., The Integral A La Henstock, {em Scientiae Mathematicae Japonicae Online}, e-2007, 763-771.
  14. bibitem{Vy}
  15. Lee, P.Y. and Vyborny, R., The Integral: An Easy Approach after Kurzweil and Henstock, Cambridge University Press, 2000.
  16. bibitem{Racca}
  17. Racca, A.P. and Cabral, E.A., On The Double Lusin Condition and Convergence Theorem for Kurzweil-Henstock Type Integrals, textit{Mathematica Bohemica} textbf{141} (2016), 153-168.
  18. bibitem{TBB}
  19. Thomson, B.S., Bruckner, J.B., and A.M. Bruckner, Real Analysis, textit{Prentice-Hall, Inc}. United States of America, 1997.