Main Article Content

Abstract

In this paper, by using natural density of subsets of N, the statistical limit and cluster points of the arithmetical functions (ap (n)), γ (n),τ(n), Δ γ (n) and Δ τ (n) are studied. In addition to this, we also investigate statistical limit and cluster points of (Δ r γ (n) and (Δ r τ (n)) for each r ın N.

Article Details

Author Biographies

Abdu Awel Adem, Mekelle Universıty

 

Department of Mathematıcs

mekelle Unıversıty, Ethiopia

Mehmet Kucukaslan, Mersin University

Prof.Dr.Mehmet kucukaslan

Department of Mathematıcs

Mersin University

How to Cite
Adem, A. A., & Kucukaslan, M. (2020). A Note on Statistical Limit and Cluster Points of The Arithmetical Functions ap(n), γ(n), and τ(n) in The Sense of Density. Journal of the Indonesian Mathematical Society, 26(2), 224–233. https://doi.org/10.22342/jims.26.2.808.224-233

References

  1. Connor, J. S., (1988) The statistical and strong p-Cesaro convergence of sequences, Analysis,
  2. VOL, 8, 47{63.
  3. Fast, H. , (1951) Sur la convergence statistique., Colloq.Math, VOL, 2, 241{244.
  4. Fehera, Z., Laszloa, B., Macajb, M., & Salatb, T., (2006) Remarks on arithmetical functions
  5. ap(n),
  6. (n), (n), Annales Mathematicae et Informaticae, VOL, 33, 35{43.
  7. Fridy, J. A., (1985) On statistical convergence, Analysis, VOL, 5, 301{313.
  8. Fridy J. A., Miller H. I., (1991) A matrix characterization of statistical convergence, Analysis,
  9. VOL, 11, 59{66.
  10. Fridy, J. A., (1993) Statistical limit points, Proceedings of the American Mathematical Soci-
  11. ety, VOL, 118,Num, 4, 1187{1192.
  12. Milan, P. (2017) DENSITY AND RELATED TOPICS, Page 8-10,
  13. Mycielski, J. (1951) Sur les representations des nombres naturels par des puissances a base
  14. et exposant naturels, Colloquium Mathematicum, VOL, 2, 254{260.
  15. Schoenberg, I. J., (1959) The integrability of certain functions and related summability meth-
  16. ods, matrix characterization of statistical convergence, Amer.Math., VOL, 66, 361{375.
  17. Steinhaus H. , Sur la convergence ordinaire at la convergence asymptotique, Colloc.Math. 2.1
  18. ,73-74.
  19. Salat, T., (1994) On the function ap; pap(n)nn n (n > 1) , Mathematica Slovaca, VOL, 44,
  20. Num, 2 143{151.
  21. Zygmund, A. (1979) Trigonometric series, 2nd., Ed. Vol. II, Cambridge Univ. press, London
  22. and New York.