A Note on Statistical Limit and Cluster Points of The Arithmetical Functions ap(n), γ(n), and τ(n) in The Sense of Density
Abstract
In this paper, by using natural density of subsets of N, the statistical limit and cluster points of the arithmetical functions (ap (n)), γ (n),τ(n), Δ γ (n) and Δ τ (n) are studied. In addition to this, we also investigate statistical limit and cluster points of (Δ r γ (n) and (Δ r τ (n)) for each r ın N.
Full text article
References
Connor, J. S., (1988) The statistical and strong p-Cesaro convergence of sequences, Analysis,
VOL, 8, 47{63.
Fast, H. , (1951) Sur la convergence statistique., Colloq.Math, VOL, 2, 241{244.
Fehera, Z., Laszloa, B., Macajb, M., & Salatb, T., (2006) Remarks on arithmetical functions
ap(n),
(n), (n), Annales Mathematicae et Informaticae, VOL, 33, 35{43.
Fridy, J. A., (1985) On statistical convergence, Analysis, VOL, 5, 301{313.
Fridy J. A., Miller H. I., (1991) A matrix characterization of statistical convergence, Analysis,
VOL, 11, 59{66.
Fridy, J. A., (1993) Statistical limit points, Proceedings of the American Mathematical Soci-
ety, VOL, 118,Num, 4, 1187{1192.
Milan, P. (2017) DENSITY AND RELATED TOPICS, Page 8-10,
Mycielski, J. (1951) Sur les representations des nombres naturels par des puissances a base
et exposant naturels, Colloquium Mathematicum, VOL, 2, 254{260.
Schoenberg, I. J., (1959) The integrability of certain functions and related summability meth-
ods, matrix characterization of statistical convergence, Amer.Math., VOL, 66, 361{375.
Steinhaus H. , Sur la convergence ordinaire at la convergence asymptotique, Colloc.Math. 2.1
,73-74.
Salat, T., (1994) On the function ap; pap(n)nn n (n > 1) , Mathematica Slovaca, VOL, 44,
Num, 2 143{151.
Zygmund, A. (1979) Trigonometric series, 2nd., Ed. Vol. II, Cambridge Univ. press, London
and New York.