Main Article Content

Abstract

In this paper we define convex, strict convex and normal structures for sets in fuzzy cone metric spaces. Also, existence and uniqueness of a fixed point for non-self mappings with nonlinear contractive condition will be proved, using the notion of strictly convex structure. Moreover, we give some examples illustrate our results.

Keywords

fixed Point convex structure normal structure fuzzy normed space

Article Details

Author Biography

Mohammad H.M. Rashid, Mutah University

Department of Mathematics& Statistics

How to Cite
Rashid, M. H. (2020). Fixed point Theorems for Non-self mappings with nonlinear contractive condition in strictly convex FCM-spaces. Journal of the Indonesian Mathematical Society, 26(1), 1–21. https://doi.org/10.22342/jims.26.1.731.1-21

References

  1. %==============================================================
  2. bibitem{AK}
  3. N.A. Assad, W.A. Kirk, Fixed-point theorems for set-valued mappings of contractive type, Pacic
  4. J. Math., {bf43}(1972), 553--562.
  5. %==================================================================================
  6. bibitem{Banach}
  7. S. Banach, Sur la op'erations dans les ensembles abstraits et leurs applications aux 'equations
  8. int'egrales, Fund. Math., {bf3}(1922), 133--181.
  9. %=======================================================================
  10. bibitem{BW}
  11. D.W. Boyd, J.S.W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc., {bf20}(1969), 458--464.
  12. %===================================================================================
  13. bibitem{C1}
  14. L.B. 'Ciri'c, Common fixed point theorems for family on non-self mappings in convex metric
  15. spaces, Nonlinear Anal., {bf71}(2009), 1662--1669.
  16. %====================================================
  17. bibitem{C2}
  18. L.B. 'Ciri'c, Quasi-contraction non-self mappings on Banach spaces, Bull. Acad. Serbe Sci. Arts,
  19. {bf23}(1998), 25--31.
  20. %===============================================================================
  21. bibitem{C3}
  22. L.B. 'Ciri'c, Contractive type non-self mappings on metric spaces of hyperbolic type, J. Math.
  23. Anal. Appl., {bf317}(2006), 28--42.
  24. %========================================================================
  25. bibitem{GR1}
  26. L. Gaji'c, V. Rakov cevi'c, Quasicontraction nonself-mappings on convex metric spaces and com-
  27. mon fixed point theorems, Fixed Point Theory Appl., {bf3}(2005), 365--375.
  28. %============================================================================
  29. bibitem{GR2}
  30. L. Gaji'c, V. Rakov cevi'c, Pair of non-self-mappings and common xed points, Appl. Math. Com-
  31. put., {bf187}(2007), 999--1006.
  32. %=============================================================================
  33. bibitem{GV}
  34. A. George and P. Veeramani, On some results in fuzzy metric spaces, J. Fuzzy Sets Syst., textbf{64} (1994), 395--399.
  35. %========================================================================
  36. bibitem{Hadzic-0}
  37. O. Hadv zi'c, Common fixed point theorems in probabilistic metric spaces with convex structure,
  38. Zb. rad. Prirod-Mat.Fak.ser. Mat. textbf{18} (1987),165--178.
  39. %=============================================================================================
  40. bibitem{HZ}
  41. L.G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings. J. Math.
  42. Anal. App., textbf{332}(2007), 1468--1476.
  43. %=======================================================================================
  44. bibitem{Jesic}
  45. S.N. Jev si'c, Convex structure, normal structure and a fixed point theorem in intuitionistic fuzzy metric space,
  46. Chaos, Solitions & Fractals, textbf{41} (2008), 292--301.
  47. %=====================================================================
  48. bibitem{Jesic-1}
  49. S.N. Jev si'c, R. M. Nikolic and A. Babav cev, A common fixed point theorem
  50. in strictly convex Menger PM-spaces, Filomat textbf{28:4} (2016), 735--743.
  51. %========================================================================
  52. bibitem{OKT}
  53. T. "Oner, M. B. Kandemir and B. Tanay, Fuzzy cone metric spaces, J.Nonlinear Sci. Appl. {bf8}(2015), 610--616.
  54. %==========================================================================
  55. bibitem{KM}
  56. O. Kramosil and J.Michalek, Fuzzy metric and Statistical metric spaces, Kybernetika, textbf{11} (1975), 326--334.
  57. %========================================================================
  58. bibitem{R}
  59. B.E. Rhoades, A fixed point theorem for some non-self mappings, Math. Japon., {bf23}(1978),
  60. --459.
  61. %==================================================================================
  62. bibitem{RH}
  63. Sh. Rezapour, R. Hamlbarani, Some notes on the paper "Cone metric spaces and fixed point theorems of contractive mappings",
  64. J. Math. Anal. Appl., textbf{345}, 719--724 (2008).
  65. %============================================================================
  66. bibitem{Sch2}
  67. B. Schweizer and A. Sklar, Probabilistical Metric Spaces, Dover Publications, New York, 2005.
  68. %========================================================================================
  69. bibitem{TA}
  70. D. Turkoglu , M. Abuloha, Cone metric spaces and fixed point theorems in diametrically contractive mappings,
  71. Acta Math. Sin., textbf{26 }, 489--496(2010).
  72. %===========================================================================
  73. bibitem{Takahashi}
  74. W. Takahashi, A convexity in metric space and nonexpansive mappings, Kodai Math. Sem. Rep., textbf{22}(1970), 142--149.
  75. %===================================================================================
  76. bibitem{Zadeh}
  77. L.A. Zadeh, Fuzzy Sets, Inform Contr. textbf{8} (1965), 338--353.
  78. %==========================================================================================================