On The Geometric Continued Fractions in Positive Characteristic

Sana Driss (1) , Hassen Kthiri (2)
(1) Faculty of Sciences of Sfax, Tunisia,
(2) Faculty of Sciences of Sfax, Tunisia

Abstract

In this paper we study another form in the field of formal power series over a finite field. If the continued fraction of a formal power seriesin $\mathbb{F}_q((X^{-1}))$ begins with sufficiently largegeometric blocks, then $f$ is transcendental.

Full text article

Generated from XML file

References

bibitem{AB} B. Adamczewski and Y. Bugea., “On the Maillet-Baker continued fractions”, {em J. Reine Angew. Math.},

textbf{606} (2007), 105-121.

bibitem{B} A. Baker. , “Continued fractions of trascendental numbers”, {em Mathematika.}, textbf{9} (1962), 1-8.

bibitem{ABOS} A. Baker., “On Mahler's classification of transcendental numbers”, {em Acta Math.}, textbf{111} (1964), 97–120.

bibitem{BS} L.E. Baum and H.M. Sweet., “Continued fractions of algebraic power series in characteristic 2”,{em Ann. Math.},

textbf{103} (1976), 593-610.

bibitem{jlddac} J. L. Davison., “A class of transcendental numbers with bounded partial quotients”, {em In

In R. A. Mollin, ed., Number Theory and Applications}, pp. 365–371, Kluwer Academic

Publishers, 1989.

bibitem{hdkf} H. Davenport., K.F. Roth., “Rational approximations to algebraic numbers”,

{em Mathematika.}, textbf{2} (1955) 160–167.

bibitem{HMT} M. Hbaib, M. Mkaouar and K. Tounsi., “Un crit`{e}re de transcendance dans le corps des s'eries

formelles $mathbb{F}_q((X^{-1}))$”, {em J. Number Theory.}, textbf{116} (2006), 140-149.

bibitem{K} A. Khintchine., “Continued fractions”,

{em Gosudarstv.} Izdat. Tech-Teor. Lit. Moscow-Leningrad, 2$^{nd}$ edition, 1949, (In Russian).

bibitem{L} J. Liouville., “Sur des classes tr`{e}s 'etendues de quantit'es dont la valeur n'est ni alg'ebrique ni m^eme r'eductibles `{a} des rationnelles alg'ebriques”, {em J. Math. Pures Appl.}, textbf{16} (1851), 133-142.

bibitem{M} E. Maillet., “Introduction `{a} la th'eorie des nombres transcendants et des propri'et'es arithm'etiques des fonctions”,

{em Gauthier-Villars.}, Paris, 1906.

bibitem{MR} W.H. Mills and D.P. Robbins., “Continued fractions for certain algebraic power series”,

{em J. Number Theory.}, textbf{23} (1986), 388-404.

bibitem{M1} M. Mkaouar., “Fractions continues et s'eries formelles alg'ebriques r'eduites”,

{em Port. Math.}, textbf{58} (2001).

bibitem{M2} M. Mkaouar., “Transcendance de certaines fractions continues dans le corps des s'eries formelles”,

{em J. Algebra.}, textbf{281} (2004), 502-507.

bibitem{P} O. Perron., “Die Lehre von den Kettenbr"{u}chen”, {em Teubner}, Leipzig, 1929.

bibitem{sh} W.M. Schmidt., “Diophantine approximation”, {em Lecture Notes in Mathematics}, vol. 785. Springer, Berlin (1980)

Authors

Sana Driss
Hassen Kthiri
hassenkthiri@gmail.com (Primary Contact)
Driss, S., & Kthiri, H. (2019). On The Geometric Continued Fractions in Positive Characteristic. Journal of the Indonesian Mathematical Society, 25(2), 139–145. https://doi.org/10.22342/jims.25.2.525.139-145
Copyright and license info is not available

Article Details