Main Article Content
Abstract
Article Details
References
- bibitem{AB} B. Adamczewski and Y. Bugea., “On the Maillet-Baker continued fractions”, {em J. Reine Angew. Math.},
- textbf{606} (2007), 105-121.
- bibitem{B} A. Baker. , “Continued fractions of trascendental numbers”, {em Mathematika.}, textbf{9} (1962), 1-8.
- bibitem{ABOS} A. Baker., “On Mahler's classification of transcendental numbers”, {em Acta Math.}, textbf{111} (1964), 97–120.
- bibitem{BS} L.E. Baum and H.M. Sweet., “Continued fractions of algebraic power series in characteristic 2”,{em Ann. Math.},
- textbf{103} (1976), 593-610.
- bibitem{jlddac} J. L. Davison., “A class of transcendental numbers with bounded partial quotients”, {em In
- In R. A. Mollin, ed., Number Theory and Applications}, pp. 365–371, Kluwer Academic
- Publishers, 1989.
- bibitem{hdkf} H. Davenport., K.F. Roth., “Rational approximations to algebraic numbers”,
- {em Mathematika.}, textbf{2} (1955) 160–167.
- bibitem{HMT} M. Hbaib, M. Mkaouar and K. Tounsi., “Un crit`{e}re de transcendance dans le corps des s'eries
- formelles $mathbb{F}_q((X^{-1}))$”, {em J. Number Theory.}, textbf{116} (2006), 140-149.
- bibitem{K} A. Khintchine., “Continued fractions”,
- {em Gosudarstv.} Izdat. Tech-Teor. Lit. Moscow-Leningrad, 2$^{nd}$ edition, 1949, (In Russian).
- bibitem{L} J. Liouville., “Sur des classes tr`{e}s 'etendues de quantit'es dont la valeur n'est ni alg'ebrique ni m^eme r'eductibles `{a} des rationnelles alg'ebriques”, {em J. Math. Pures Appl.}, textbf{16} (1851), 133-142.
- bibitem{M} E. Maillet., “Introduction `{a} la th'eorie des nombres transcendants et des propri'et'es arithm'etiques des fonctions”,
- {em Gauthier-Villars.}, Paris, 1906.
- bibitem{MR} W.H. Mills and D.P. Robbins., “Continued fractions for certain algebraic power series”,
- {em J. Number Theory.}, textbf{23} (1986), 388-404.
- bibitem{M1} M. Mkaouar., “Fractions continues et s'eries formelles alg'ebriques r'eduites”,
- {em Port. Math.}, textbf{58} (2001).
- bibitem{M2} M. Mkaouar., “Transcendance de certaines fractions continues dans le corps des s'eries formelles”,
- {em J. Algebra.}, textbf{281} (2004), 502-507.
- bibitem{P} O. Perron., “Die Lehre von den Kettenbr"{u}chen”, {em Teubner}, Leipzig, 1929.
- bibitem{sh} W.M. Schmidt., “Diophantine approximation”, {em Lecture Notes in Mathematics}, vol. 785. Springer, Berlin (1980)
References
bibitem{AB} B. Adamczewski and Y. Bugea., “On the Maillet-Baker continued fractions”, {em J. Reine Angew. Math.},
textbf{606} (2007), 105-121.
bibitem{B} A. Baker. , “Continued fractions of trascendental numbers”, {em Mathematika.}, textbf{9} (1962), 1-8.
bibitem{ABOS} A. Baker., “On Mahler's classification of transcendental numbers”, {em Acta Math.}, textbf{111} (1964), 97–120.
bibitem{BS} L.E. Baum and H.M. Sweet., “Continued fractions of algebraic power series in characteristic 2”,{em Ann. Math.},
textbf{103} (1976), 593-610.
bibitem{jlddac} J. L. Davison., “A class of transcendental numbers with bounded partial quotients”, {em In
In R. A. Mollin, ed., Number Theory and Applications}, pp. 365–371, Kluwer Academic
Publishers, 1989.
bibitem{hdkf} H. Davenport., K.F. Roth., “Rational approximations to algebraic numbers”,
{em Mathematika.}, textbf{2} (1955) 160–167.
bibitem{HMT} M. Hbaib, M. Mkaouar and K. Tounsi., “Un crit`{e}re de transcendance dans le corps des s'eries
formelles $mathbb{F}_q((X^{-1}))$”, {em J. Number Theory.}, textbf{116} (2006), 140-149.
bibitem{K} A. Khintchine., “Continued fractions”,
{em Gosudarstv.} Izdat. Tech-Teor. Lit. Moscow-Leningrad, 2$^{nd}$ edition, 1949, (In Russian).
bibitem{L} J. Liouville., “Sur des classes tr`{e}s 'etendues de quantit'es dont la valeur n'est ni alg'ebrique ni m^eme r'eductibles `{a} des rationnelles alg'ebriques”, {em J. Math. Pures Appl.}, textbf{16} (1851), 133-142.
bibitem{M} E. Maillet., “Introduction `{a} la th'eorie des nombres transcendants et des propri'et'es arithm'etiques des fonctions”,
{em Gauthier-Villars.}, Paris, 1906.
bibitem{MR} W.H. Mills and D.P. Robbins., “Continued fractions for certain algebraic power series”,
{em J. Number Theory.}, textbf{23} (1986), 388-404.
bibitem{M1} M. Mkaouar., “Fractions continues et s'eries formelles alg'ebriques r'eduites”,
{em Port. Math.}, textbf{58} (2001).
bibitem{M2} M. Mkaouar., “Transcendance de certaines fractions continues dans le corps des s'eries formelles”,
{em J. Algebra.}, textbf{281} (2004), 502-507.
bibitem{P} O. Perron., “Die Lehre von den Kettenbr"{u}chen”, {em Teubner}, Leipzig, 1929.
bibitem{sh} W.M. Schmidt., “Diophantine approximation”, {em Lecture Notes in Mathematics}, vol. 785. Springer, Berlin (1980)