Main Article Content

Abstract

Let $(M,g(t))$ be a compact Riemannian manifold  and  the metric $g(t)$ evolve by the Ricci-Bourguignon flow. We find the formula variation of the eigenvalues of  geometric operator $-\Delta_{\phi}+cR$ under  the Ricci-Bourguignon flow, where  $\Delta_{\phi}$  is the Witten-Laplacian operator and $R$ is the scalar curvature. In the final  we show that some quantities dependent to the eigenvalues of  the geometric operator are  nondecreasing along the Ricci-Bourguignon flow on  closed manifolds  with nonnegative curvature.

Keywords

Laplace Ricci-Bourguignon flow

Article Details

How to Cite
Azami, S. (2017). First Eigenvalues of Geometric Operator under The Ricci-Bourguignon Flow. Journal of the Indonesian Mathematical Society, 24(1), 51–60. https://doi.org/10.22342/jims.24.1.434.51-60

References

  1. J. P. Bourguignon, Ricci curvature and Einstein metrics, Global differential geometry and global analysis (Berlin,1979) Lecture nots in Math. vol. 838, Springer, Berlin, 1981, 42-63.
  2. X. D. Cao, Eigenvalues of $(-Delta+frac{R}{2})$ on manifolds with nonnegative curvature operator. Math. Ann. 337 (2) (2007), 435-441.
  3. X. D. Cao, First eigenvalues of geometric operators under the Ricci flow, Proc. Amer. Math. Soc. 136 (2008), 4075-4078.
  4. G. Catino, L. Cremaschi, Z. Djadli, C. Mantegazza, L. Mazzieri, The Ricci-Bourguignon flow, Pacific J. Math. (2015).
  5. L. F. D. Cerbo, Eigenvalues of the Laplacian under the Ricci flow, Rendiconti di Mathematica, Serie VII, Volume
  6. , Roma (2007), 183-195.
  7. Q. -M. Cheng and H. C. Yang, Estimates on eigenvalues of Laplacian, Math. Ann., 331 (2005),
  8. -460.
  9. S. Fang and F. Yang, First eigenvalues of geometric operators under the Yamabe flow, Bull. Korean Math. Soc. 53 (2016), 1113-1122.
  10. J. F. Li, Eigenvalues and energy functionals with monotonicity formula under Ricci flow, Math. Ann. (2007) 338,
  11. -946.
  12. G. Perelman, The entropy formula for the Ricci flow and its geometric applications (2002), ArXiv: 0211159.
  13. F. S. Wen, X. H. Feng, Z. Peng, Evolution and monotonicity of eigenvalues under the Ricci flow, Sci. China Math. 58 (2015),no. 8, 1737-1744.
  14. J. Y. Wu, First eigenvalue monotonicity for the $p$-Laplace operator under the Ricci flow,
  15. Acta mathematica Sinica, English senes, Vol. 27, NO.8 (2011), 1591-1598.
  16. F. Zeng, Q. He, B. Chen, Monotonicity of eigenvalues of geometric operators along the Ricci-Bourguignon flow, Arxiv, 152.08158v1.