Main Article Content
Abstract
Keywords
Article Details
References
- J. P. Bourguignon, Ricci curvature and Einstein metrics, Global differential geometry and global analysis (Berlin,1979) Lecture nots in Math. vol. 838, Springer, Berlin, 1981, 42-63.
- X. D. Cao, Eigenvalues of $(-Delta+frac{R}{2})$ on manifolds with nonnegative curvature operator. Math. Ann. 337 (2) (2007), 435-441.
- X. D. Cao, First eigenvalues of geometric operators under the Ricci flow, Proc. Amer. Math. Soc. 136 (2008), 4075-4078.
- G. Catino, L. Cremaschi, Z. Djadli, C. Mantegazza, L. Mazzieri, The Ricci-Bourguignon flow, Pacific J. Math. (2015).
- L. F. D. Cerbo, Eigenvalues of the Laplacian under the Ricci flow, Rendiconti di Mathematica, Serie VII, Volume
- , Roma (2007), 183-195.
- Q. -M. Cheng and H. C. Yang, Estimates on eigenvalues of Laplacian, Math. Ann., 331 (2005),
- -460.
- S. Fang and F. Yang, First eigenvalues of geometric operators under the Yamabe flow, Bull. Korean Math. Soc. 53 (2016), 1113-1122.
- J. F. Li, Eigenvalues and energy functionals with monotonicity formula under Ricci flow, Math. Ann. (2007) 338,
- -946.
- G. Perelman, The entropy formula for the Ricci flow and its geometric applications (2002), ArXiv: 0211159.
- F. S. Wen, X. H. Feng, Z. Peng, Evolution and monotonicity of eigenvalues under the Ricci flow, Sci. China Math. 58 (2015),no. 8, 1737-1744.
- J. Y. Wu, First eigenvalue monotonicity for the $p$-Laplace operator under the Ricci flow,
- Acta mathematica Sinica, English senes, Vol. 27, NO.8 (2011), 1591-1598.
- F. Zeng, Q. He, B. Chen, Monotonicity of eigenvalues of geometric operators along the Ricci-Bourguignon flow, Arxiv, 152.08158v1.
References
J. P. Bourguignon, Ricci curvature and Einstein metrics, Global differential geometry and global analysis (Berlin,1979) Lecture nots in Math. vol. 838, Springer, Berlin, 1981, 42-63.
X. D. Cao, Eigenvalues of $(-Delta+frac{R}{2})$ on manifolds with nonnegative curvature operator. Math. Ann. 337 (2) (2007), 435-441.
X. D. Cao, First eigenvalues of geometric operators under the Ricci flow, Proc. Amer. Math. Soc. 136 (2008), 4075-4078.
G. Catino, L. Cremaschi, Z. Djadli, C. Mantegazza, L. Mazzieri, The Ricci-Bourguignon flow, Pacific J. Math. (2015).
L. F. D. Cerbo, Eigenvalues of the Laplacian under the Ricci flow, Rendiconti di Mathematica, Serie VII, Volume
, Roma (2007), 183-195.
Q. -M. Cheng and H. C. Yang, Estimates on eigenvalues of Laplacian, Math. Ann., 331 (2005),
-460.
S. Fang and F. Yang, First eigenvalues of geometric operators under the Yamabe flow, Bull. Korean Math. Soc. 53 (2016), 1113-1122.
J. F. Li, Eigenvalues and energy functionals with monotonicity formula under Ricci flow, Math. Ann. (2007) 338,
-946.
G. Perelman, The entropy formula for the Ricci flow and its geometric applications (2002), ArXiv: 0211159.
F. S. Wen, X. H. Feng, Z. Peng, Evolution and monotonicity of eigenvalues under the Ricci flow, Sci. China Math. 58 (2015),no. 8, 1737-1744.
J. Y. Wu, First eigenvalue monotonicity for the $p$-Laplace operator under the Ricci flow,
Acta mathematica Sinica, English senes, Vol. 27, NO.8 (2011), 1591-1598.
F. Zeng, Q. He, B. Chen, Monotonicity of eigenvalues of geometric operators along the Ricci-Bourguignon flow, Arxiv, 152.08158v1.