Main Article Content

Abstract

In this paper we have computed minimum covering Seidel energies ofa star graph, complete graph, crown graph, complete bipartite graph and cocktailparty graphs. Upper and lower bounds for minimum covering Seidel energies of agraphs are also established.

DOI : http://dx.doi.org/10.22342/jims.22.1.234.71-82

Keywords

Minimum covering set Minimum covering Seidel matrix Minimum covering Seidel eigenvalues Minimum covering Seidel energy of a graph.

Article Details

Author Biography

Rajesh Kanna, Post Graduate Department of Mathematics, Maharanis Science College for Women, Mysore 570005, Karnataka, India./

Asst.Professor,

Post Graduate Department of Mathematics,

How to Cite
Kanna, R., R, J., & Farahani, M. R. (2016). MINIMUM COVERING SEIDEL ENERGY OF A GRAPH. Journal of the Indonesian Mathematical Society, 22(1), 71–82. https://doi.org/10.22342/jims.22.1.234.71-82

References

  1. R.B.Bapat, page No.32,Graphs and Matrices,Hindustan Book Agency,(2011).
  2. R.B.Bapat, S.Pati, Energy of a graph is never an odd integer.Bull. Kerala Math.Assoc. 1, 129 - 132 (2011)
  3. C.Adiga, A. Bayad,I.Gutman, S.A.Srinivas,The minimum covering energy of a graph,Kragujevac J. Sci. 34 (2012) 39 - 56
  4. D.Cvetkovic, I.Gutman (eds.),Applications of Graph Spectra (Mathematical Institution,Belgrade,2009)
  5. D. Cvetkovic, I.Gutman (eds.) Selected Topics on Applications of Graph Spectra,(Mathematical Institute Belgrade,2011)
  6. A.Graovac, I.Gutman, N.Trinajstic,Topological Approach to the Chemistry of Conjugated Molecules (Springer, Berlin,1977)
  7. I.Gutman,The energy of a graph.Ber. Math-Statist. Sekt. Forschungsz.Graz 103,1-22 (1978)
  8. I.Gutman, X. Li, J.Zhang,in Graph Energy,ed. by M.Dehmer, F.Emmert - Streib.Analysis of Complex Networks. From Biology to Linguistics (Wiley - VCH, Wein-heim,2009),pp. 145 174.
  9. I.Gutman, in The energy of a graph: Old and New Results,ed.by A. Betten, A.Kohnert, R. Laue, A. Wassermann. Algebraic combinatorics and Applications (Springer, Berlin,2001),pp. 196 - 211.
  10. I.Gutman, O.E. Polansky,Mathematical Concepts in Organic Chemistry (Springer, Berlin,1986)
  11. Huiqing Liu,Mei Lu and Feng Tian,Some upper bounds for the energy of graphs Journal of Mathematical Chemistry, Vol. 41, No.1, (2007).
  12. B.J.McClelland, Properties of the latent roots of a matrix: The estimation of-electron energies.J. Chem. Phys.54, 640 - 643 (197
  13. J.H. Koolen, V. Moulton, Maximal energy graphs. Adv.Appl. Math. 26,47 - 52(2001)
  14. I. Z. Milovanovic, E. I. Milovanovic, A. Zakic, A Short note on Graph Energy,MATH Commun. Math. Comput. Chem, 72 (2014) 179-182.[15] M. R. Rajesh Kanna, B. N. Dharmendra, and G. Sridhara, Minimum dominating energy of a graph. International Journal of Pure and Applied Mathematics, 85,No. 4 (2013) 707-718. [http://dx.doi.org/10.12732/ijpam.v85i4.7]
  15. Willem H. Haemers, Seidel Switching and Graph Energy, MATH Commun.Math. Comput. Chem, 68 (2012) 653-659.