Main Article Content
Abstract
By virtue of Pick's formula, the generalized Ehrhart quasi-polynomial of the triangulation $\mathcal{P} \subset \mathbb{R}^2$ with the vertices $(0,0), (u(n),0), (0,v(n))$, where $u(x)$ and $v(x)$ belong to $\mathbb{Z}[x]$ and where $n=1,2, \ldots$, will be computed.
Keywords
generalized Ehrhart quasi-polynomial
Pick's formula
Article Details
How to Cite
Hibi, T., Nakamura, M., Samudro, I. N. K., & Tsuchiya, A. (2015). PICK’S FORMULA AND GENERALIZED EHRHART QUASI-POLYNOMIALS. Journal of the Indonesian Mathematical Society, 21(2), 71–75. https://doi.org/10.22342/jims.21.2.192.71-75
References
- M.~Beck and S.~Robins,
- ``Computing the continuous discretely,''
- Springer, 2007
- S.~Chen, N.~Li, and S.~V.~Sam,
- Generalized Ehrhart polynomials,
- textit{Trans. Amer. Math. Soc.}
- textbf{364}(2012), 551--569.
- R.~P.~Stanley,
- ``Enumerative Combinatorics, Volume I,''
- Second Ed., Cambridge University Press, 2012.
References
M.~Beck and S.~Robins,
``Computing the continuous discretely,''
Springer, 2007
S.~Chen, N.~Li, and S.~V.~Sam,
Generalized Ehrhart polynomials,
textit{Trans. Amer. Math. Soc.}
textbf{364}(2012), 551--569.
R.~P.~Stanley,
``Enumerative Combinatorics, Volume I,''
Second Ed., Cambridge University Press, 2012.