Characterization of \mathcal{R}(2K_2,F_n) with Minimum Order for Small n

Muhammad Rafif Fajri (1) , Hilda Assiyatun (2) , Edy Tri Baskoro (3)
(1) Doctoral Program of Mathematics, Institut Teknologi Bandung, Indonesia,
(2) Combinatorial Mathematics Research Group, Institut Teknologi Bandung, Indonesia,
(3) Combinatorial Mathematics Research Group, Institut Teknologi Bandung, Indonesia

Abstract

A Fan graph $F_n$ is defined as the graph $P_n+K_1$, where $P_n$ is the path on $n$ vertices. The notation $F \rightarrow (G, H)$ means that if all edges of $F$ are arbitrarily colored by red or blue, then either the subgraph of $F$ induced by all red edges contains a graph $G$ or the subgraph of $F$ induced by all blue edges contains a graph $H.$ Let $\mathcal{R}(G, H)$ denote the set of all graphs $F$ satisfying $F \rightarrow (G, H)$ and for every $e \in E(F),$ $(F - e) \not\rightarrow (G, H).$ In this paper, we propose some properties for a graph $G$ of minimum order that belongs to $\mathcal{R}(2K_2,F_n),$ for $n \geq 3$. We have also found all members of $\mathcal{R}(2K_2,F_n)$ with a minimum order for $n \in [3,7]$.

Full text article

Generated from XML file

References

F. P. Ramsey, “On a problem of formal logic," in Proceedings of the London Mathematical Society, vol. 30, pp. 263-286, 1930. https://www.cs.umd.edu/~gasarch/BLOGPAPERS/ramseyorig.pdf.

S. A. Burr, P. Erdos, and L. Lov asz, “On graphs of ramsey type," Ars Combinatoria, vol. 1, pp. 167-190, 1976. https://api.semanticscholar.org/CorpusID:17474857.

R. Diestel, Graph Theory (5th. ed.). Springer Publishing Company, Incorporated, 2017. https://doi.org/10.1007/978-3-662-53622-3.

E. T. Baskoro, S. M. Nababan, and M. Miller, “On ramsey numbers for trees versus wheels of five or six vertices," Communications in Algebra, vol. 18, no. 4, pp. 717-721, 2002. https://doi.org/10.1007/s003730200056.

S. A. Burr, “Generalized ramsey theory for graphsa survey," Graphs and Combinatorics. Springer, Berlin, vol. 406, pp. 52-75, 1973. https://doi.org/10.1007/BFb0066435.

C. J. Jayawardene and C. C. Rousseau, “The ramsey number for a cycle of length five vs. a complete graph of order six," J. Graph Theory, vol. 35, pp. 99-108, 2000. https://doi.org/10.1002/1097-0118(200010)35:2<99::AID-JGT4>3.0.CO;2-6.

Surahmat, E. T. Baskoro, and H. J. Broersma, “The ramsey numbers of large cycles versus small wheels," INTEGERS Electron. J. Combin. Number Theory, vol. 4, no. 10, pp. 1-9,2004. https://www.kurims.kyoto-u.ac.jp/EMIS/journals/INTEGERS/papers/e10/e10.pdf.

T. Luczak, On ramsey minimal graphs," The Electronic Journal of Combinatorics, vol. 1, p. #R4, 1994. https://doi.org/10.37236/1184.

S. A. Burr, P. Erds, R. J. Faudree, and R. H. Schelp, “A class of ramsey-finite graphs," in Proceeding of the Ninth Southeastern Conference on Combinatorics, Graph Theory and Computing, pp. 171-180, 1978. https://static.renyi.hu/~p_erdos/1978-02.pdf.

E. T. Baskoro, T. Vetrk, and L. Yulianti, “A note on ramsey (K1;2; C4)-minimal graphs of diameter 2," in Proceedings of the International Conference 70 Years of FCE STUs, Bratislava, Slovakia, 2008.

E. T. Baskoro, L. Yulianti, and A. H., “Ramsey ( K1;2; C4)-minimal graphs," J. Combin. Math. Combin. Comput., vol. 65, pp. 79-90, 2008.

T. Vetrk, L. Yulianti, and B. E. T., “On ramsey ( K1;2; C4)-minimal graphs," Discuss. Math. Graph Theory, vol. 30, p. 637649, 2010. https://doi.org/10.7151/dmgt.1519.

L. Yulianti, H. Assiyatun, S. Uttunggadewa, and B. E. T., “On ramsey ( K1;2; P4)-minimal graphs," Far East J. Math. Sci., vol. 40, no. 1, pp. 23-26, 2010.

M. Borowiecki, I. Schiermeyer, and E. Sidorowicz, “Ramsey ( K1;2; K3)-minimal graphs,"Electron. J. Combin., vol. 12, no. R20, pp. 1-15, 2005. https://www.combinatorics.org/ojs/index.php/eljc/article/view/v12i1r20/pdf.

M. Borowiecka-Olszewska and M. Haluszckak, “On ramsey ( K1;m; G)-minimal graphs," Discrete Math, vol. 313, no. 19, p. 18431855, 2012. https://doi.org/10.1016/j.disc.2012.06.020.

I. Mengersen and J. Oeckermann, “"matching-star ramsey sets," Discrete Appl. Math., vol. 95, pp. 417-424, 1999. https://doi.org/10.1016/S0166-218X(99)00089-X.

H. Muhshi and E. T. Baskoro, “On ramsey (3 K2; P3)-minimal graphs," in AIP Conf. Proc., vol. 1450, pp. 110-117, 2012. https://doi.org/10.1063/1.4940826.

E. T. Baskoro and L. Yulianti, “On ramsey minimal graphs for 2 K2 versus Pn," Adv. Appl. Discrete Math., vol. 8, no. 2, pp. 83-90, 2011.

D. Tatanto and B. E. T., “On ramsey (2 K2; 2Pn)-minimal graphs," in AIP Conference Proceedings, vol. 1450, pp. 90-95, 2012. https://doi.org/10.1063/1.4724122.

D. R. Silaban, A. I. Taufiq, and K. Wijaya, “On ramsey (mK2; P4)-minimal graphs," SIAM Journal on Discrete Mathematics, vol. 2, p. 467488, 2008. https://doi.org/10.2991/acsr.k.220202.003.

K. Wijaya, E. T. Baskoro, H. Assiyatun, and D. Suprijanto, “The complete list of ramsey (2K2; K4)-minimal graphs," Electron. J. Graph Theory Appl., vol. 3, no. 2, pp. 216-227, 2015. http://dx.doi.org/10.5614/ejgta.2015.3.2.9.

K. Wijaya, E. T. Baskoro, H. Assiyatun, and D. Suprijanto, “On unicyclic ramsey (mK2; P3)minimal graphs," Proc. Graph Theory, vol. 74, pp. 10-14, 2015. https://doi.org/10.1016/j.procs.2015.12.067.

E. T. Baskoro and W. K., “On ramsey (2 K2; K4)-minimal graphs," Mathematics in the 21st Century, Springer Proc. Math. Stat., vol. 98, pp. 11-17, 2015. https://doi.org/10.1007/978-3-0348-0859-0_2.

K. Wijaya, E. T. Baskoro, H. Assiyatun, and D. Suprijanto, “On ramsey ( mK2; H)minimal graphs," Graphs Comb., vol. 23, pp. 233-243, 2017. https://doi.org/10.1007/s00373-016-1748-1.

M. R. Fajri, A. H., and E. T. Baskoro, “On ramsey (2K2; Wn)-minimal graphs of smallest order," Electronic Journal of Graph Theory and Applications, 2024. (On Review).

M. R. Fajri, A. H., and E. T. Baskoro, “The characterization of ramsey (2 K2; F rn)-minimal graphs of smallest order," in AIP Conf. Proc., 2025. (Accepted).

Authors

Muhammad Rafif Fajri
rafiffajri00@gmail.com (Primary Contact)
Hilda Assiyatun
Edy Tri Baskoro
Author Biographies

Muhammad Rafif Fajri, Doctoral Program of Mathematics, Institut Teknologi Bandung

Doctoral Program of Mathematics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, 40132, Indonesia, 30123003@mahasiswa.itb.ac.id

Hilda Assiyatun, Combinatorial Mathematics Research Group, Institut Teknologi Bandung

Combinatorial Mathematics Research Group, Faculty of Mathematics and
Natural Science, Institut Teknologi Bandung, 40132, Indonesia

Center for Research Collaboration on Graph Theory and Combinatorics,
Indonesia

Edy Tri Baskoro, Combinatorial Mathematics Research Group, Institut Teknologi Bandung

Combinatorial Mathematics Research Group, Faculty of Mathematics and
Natural Science, Institut Teknologi Bandung, 40132, Indonesia

Center for Research Collaboration on Graph Theory and Combinatorics,
Indonesia

Fajri, M. R., Assiyatun, H., & Baskoro, E. T. (2025). Characterization of \mathcal{R}(2K_2,F_n) with Minimum Order for Small n. Journal of the Indonesian Mathematical Society, 31(2), 1871. https://doi.org/10.22342/jims.v31i2.1871

Article Details