Main Article Content

Abstract

This paper focuses on studying the properties of constacyclic codes, quantum error-correcting codes. The code is studied over a specific mathematical structure called the ring $\mathfrak{S}$, which is defined as $\mathfrak{S}=\mathfrak{I}_q[\mathfrak{u},\mathfrak{v}]/\langle \mathfrak{u}^2-\alpha^2,~ \mathfrak{v}^2-\alpha^2,~\mathfrak{u}\mathfrak{v}-\mathfrak{v}\mathfrak{u} \rangle$, where $\mathfrak{I}_q$ is a finite field of $q$ elements, $\alpha$ be the nonzero elements of the field $\mathfrak{I}_q$ and $q$ is a power of an odd prime $p$ such that $q=p^m, ~\textup{for}~ m \ge 1$. The paper also introduces a Gray map and use it to decompose constacyclic codes over the ring $\mathfrak{S}$ into a direct sum of constacyclic codes over $\mathfrak{I}_q$. We construct new and better quantum error-correcting codes over the ring $\mathfrak{S}$ (cf.; Table 1 and Table 2). Moreover, we also obtain best known linear codes as well as best dimension linear codes (cf.; Table 4).

Keywords

Constacyclic code Quantum code Gray map Dual code

Article Details

Author Biography

Shakir Ali, Aligarh Muslim University, Aligarh, India

Department of Mathematics

Aligarh Muslim University, Aligarh

How to Cite
Ali, S., & Sharma, P. (2024). ON QUANTUM CODES CONSTRUCTION FROM CONSTACYCLIC CODES OVER THE RING I_q[u,v] / <u^2-a^2, v^2-a^2, uv-vu>. Journal of the Indonesian Mathematical Society, 30(2), 139–159. https://doi.org/10.22342/jims.30.2.1587.139-159

References

  1. Shor, P. W.: Algorithms for quantum computation: discrete logarithms and factoring. Proceedings 35th Annual Symposium on Foundations of Computer Science. IEEE Comput. Soc. Press: 124-134. (1994). https://doi.org/10.1109/sfcs.1994.365700.
  2. Shor, P. W.: Scheme for reducing decoherence in quantum memory. Phys. Rev. A 52, 2493-2496 (1995).
  3. Calderbank, A. R., Rains, E. M., Shor, P. M., Sloane, N. J. A.: Quantum error-correction via codes over
  4. GF(4). IEEE Trans. Inf Theory 44, 1369-1387 (1998).
  5. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes, North-Holland (1977)
  6. Grassl, M.: Code Tables: Bounds on the parameters of various types of codes available at http://www.codetables.de/ accessed on 20/04/2023.
  7. Qian, J.: Quantum codes from cyclic codes over $mathfrak{I}2 + vmathfrak{I}2$. J. Inf. Compt. Sci. 10, 1715-1722 (2013).
  8. Ashraf, M., Mohammad, G.: Quantum codes from cyclic codes over $mathfrak{I}_q + umathfrak{I}_q + vmathfrak{I}_q + uvmathfrak{I}_q$ . Quantum Inf. Process. 15(10), 4089-4098 (2016), , DOI: 10.1007/s11128-016-1379-8.
  9. Ashraf, M., Mohammad, G.: Quantum codes over Fp from cyclic codes over $mathfrak{I}p[u,v]/langle u^2-1, ~v^3- v,~uv-vurangle $. Cryptogr. Commun. 11, 325-335 (2019).
  10. Edel, Y. Some good quantum twisted codes. https://www.mathi.uni-heidelberge.de/~yves/Matritzen/QTBCH/newline QTBCHIndex.html.
  11. Gao, Y., Gao, J., Fu, F. W.: Quantum codes from cyclic codes over the ring $mathfrak{I}_q + vmathfrak{I}_q + ldots + v^rmathfrak{I}_q$ .AAECC 30, 161-174 (2019).
  12. Chen, B., Ling, S., Zhang, G.: Application of constacyclic codes to quantum MDS codes. IEEE Trans.Inf. Theory 61(3), 1474-1484 (2015).
  13. Islam, H., Prakash, O., Bhunia, D.K.: Quantum codes obtained from constacyclic codes. Internat. J. Theoret. phys. 58(11), 3945-3951(2019).
  14. Ma, F., Gao, J., Fu, F.W.: Constacyclic codes over the ring $mathfrak{I}_q + vmathfrak{I}_q + v^2mathfrak{I}_q$ and their applications of constructing new non-binary quantum codes. Quantum Inf. Proces 17(6), 4 (2018).
  15. Gao, J., Wang, Y.: u-Constacyclic codes over $mathfrak{I}_q + umathfrak{I}_q$ and their applications of constructing new non-binary quantum codes. Quantum Inf. Process. 17(1), Art. 4 (2018).
  16. Alkenani, A. N., Ashraf, M., mohammad, G.: Quantum codes from constacyclic codes over the ring $mathfrak{I}_q[u_1,u_2]/langle u_1^2-1, u_2^2-1,u_1u_2-u_2u_1rangle$. Mathematics 8(5), 781: https://doi.org/10.3390/math8050781 (2020).
  17. Islam, H., Prakash, O., Verma, R. K.: Quantum codes from the cyclic codes over $F_p[v,~w]/langle v^2-1,~w^2-1,~vw-wv rangle$. Springer Proc. Math. Stat. 307. https://doi.org/10.1007/978-981-15-1157-8-6 (2019).
  18. Ali, S., Alali, A. S., Jeelani, M., Kurulay, M., Oztas, E. S., & Sharma, P.: On the construction of quantum and LCD codes from cyclic codes over the finite commutative rings. Axioms 12(4), 367, (2023).
  19. Ali, S., Alali, A. S., Sharma, P., Wong, K.B., Oztas, E. S., Jeelani, M.: On Optimal and Quantum Code Construction from Cyclic Codes over $mathbb{F}_qPQ$ with Applications. Entropy 25(8) 1161, (2023).
  20. Cengellenmis, Y., & Dertli, A.; The Quantum Codes over $F_q$ and Quantum Quasi-cyclic Codes over $F_p$. Mathematical Sciences and Applications E-Notes, 7(1), 87-93, (2019).
  21. Diao, L., Gao, J., Lu., J.: Some results on-additive cyclic codes. Advances in Mathematics of Communications, 14(4): 555-572, 2020. doi: 10.3934/amc.2020029.
  22. Islam, H., & Prakash, O.: New quantum codes from constacyclic and additive constacyclic codes. Quantum Information Processing, 19, 1-17, (2020).
  23. Ma, F., Gao, J., Fu, F.W.: New non-binary quantum codes from constacyclic codes over $mathfrak{I}_q [u, v]/langle u^2-1, v^2-v, uv-vu rangle $. Adv. Math. Commun. 13(2), 421-434 (2019).
  24. Bosma, W., Cannon, J.: Handbook of magma functions. University of Sydney (1995).
  25. Dertli, A., Cengellenmis, Y., Eren, S.: On quantum codes obtained from cyclic codes over A2. Int. J. Quantum Inf. 13(3), 1550031 (2015).
  26. Dinh, H. Q., Bag, T., Upadhyay, A. K., Ashraf, M., Mohammad, G., & Chinnakum, W.: Quantum codes from a class of constacyclic codes over finite commutative rings. Journal of Algebra and Its Applications, 19(12), 2150003, 2020.
  27. Grassl, M., Beth, T.: On optimal quantum codes. Int. J. Quantum Inf. 2(1), 55-64 (2004)

Most read articles by the same author(s)