Tucker3 Tensor Decomposition for the Standardized Residual Hypermatrix on Three-Way Correspondence Analysis

Karunia Eka Lestari (1) , Mokhammad Ridwan Yudhanegara (2) , Edwin Setiawan Nugraha (3) , Sisilia Sylviani (4)
(1) Department of Mathematics Education, University of Singaperbangsa Karawang, Indonesia,
(2) Department of Mathematics Education, University of Singaperbangsa Karawang, Indonesia,
(3) Study Program of Actuarial Science, President University, Indonesia,
(4) Department of Mathematics, Padjadjaran University, Indonesia

Abstract

This study investigates the theoretical and practical mathematical aspects of Tucker3 tensor decomposition from the three-way correspondence analysis point of view. Since the standardized residual hypermatrix represents the association of the three categorical variables, this study focused on (1) Tucker3 tensor decomposition for the standardized residual hypermatrix, (2) some mathematical properties of Tucker3 tensor decomposition, and (3) constructing the correspondence plot via Tucker3 tensor decomposition. Some mathematical results are presented in lemmas, theorems and algorithms, while a practical result is exhibited at the end of the discussion.

Full text article

Generated from XML file

References

P. B. Imrey, G. G. Koch, M. E. Stokes, J. N. Darroch, D. H. Freeman, and H. D. Tolley, “Categorical data analysis: some reflection on the log linear model and logistic regression, par 1: Historical and methodological overview,” International Statistical Review / Revue Internationale de Statistique, vol. 49, no. 3, pp. 265–283, 1981. https://doi.org/10.2307/1402613.

A. Agresti, Analysis of Ordinal Categorical Data. Jhon Wileys & Sons, 2010. https://doi.org/10.1002/9780470594001.

S. E. Fienberg and A. Rinaldo, “Three centuries of categorical data analysis: Log-linear models and maximum likelihood estimation,” Journal of Statistical Planning and Inference, vol. 137, no. 11, pp. 3430–3445, 2007. https://doi.org/10.1016/j.jspi.2007.03.022.

E. Beh and R. Lombardo, “Correspondence analysis theory, practice, and new strategies,” Theory, paractice and new strategies, 2014. https://doi.org/10.1002/9781118762875.

K. E. Lestari, U. S. Pasaribu, S. W. Indratno, and H. Garminia, “Generating roots of cubic polynomials by cardano’s approach on correspondence analysis,” Heliyon, vol. 6, no. 6, pp. 1–8, 2020. https://doi.org/10.1016/j.heliyon.2020.e03998.

K. E. Lestari, M. R. Utami, and M. R. Yudhanegara, “Exploratory analysis on adaptive reasoning of undergraduate student in statistical inference.,” International Journal of Instruction, vol. 15, no. 4, pp. 535–554, 2022. https://doi.org/10.29333/iji.2022.15429a.

M. L. Eaton and D. E. Tyler, “On wielandt’s inequality and its application to the asymptotic distribution of the eigenvalues of a random symmetric matrix,” The Annals of Statistics, pp. 260–271, 1991. https://doi.org/10.1214/aos/1176347980.

C. Eckart and G. Young, “The approximation of one matrix by another of lower rank,” Psychometrika, vol. 1, no. 3, pp. 211–218, 1936. https://doi.org/10.1214/aos/1176347980.

P. L. Emerson, “Numerical construction of orthogonal polynomials from a general recurrence formula,” Biometrics, vol. 24, no. 3, pp. 695–701, 1968. https://doi.org/10.2307/2528328.

E. Beh, “Theory & methods: Partitioning pearson’s chi-squared statistic for singly ordered two-way contingency tables,” Australian & New Zealand Journal of Statistics, vol. 43, no. 3, pp. 327 – 333, 2002. https://doi.org/10.1111/1467-842X.00179.

C. Burt, “The factorial analysis of qualitative data,” British Journal of Statistical Psychology, vol. 3, no. 3, pp. 166–185, 1950. https://doi.org/10.1111/j.2044-8317.1950.tb00296.x.

K. Lestari, U. Pasaribu, S. Indratno, and H. Garminia, “The comparative analysis of dependence for three-way contingency table using burt matrix and tucker3 in correspondence analysis,” in Journal of Physics: Conference Series, vol. 1245, p. 012056, IOP Publishing, 2019a. https://doi.org/10.1088/1742-6596/1245/1/012056.

M. S. Bartlett, “Contingency table interactions,” Supplement to the Journal of the Royal Statistical Society, vol. 2, no. 2, pp. 248–252, 1935. https://doi.org/10.2307/2983639.

M. Greenacre, Correspondence analysis in practice. chapman and hall/crc, 2017. https://doi.org/10.1201/9781315369983.

L. R. Tucker, “Some mathematical notes on three-mode factor analysis,” Psychometrika, vol. 31, no. 3, pp. 279–311, 1966. https://doi.org/10.1007/BF02289464.

L. De Lathauwer, B. De Moor, and J. Vandewalle, “A multilinear singular value decomposition,” SIAM journal on Matrix Analysis and Applications, vol. 21, no. 4, pp. 1253–1278, 2000. https://doi.org/10.1137/S0895479896305696.

L. Hogben, “Handbook of linear algebra,” 2013. https://doi.org/10.1201/b16113.

T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” SIAM review, vol. 51, no. 3, pp. 455–500, 2009. https://doi.org/10.1137/07070111X.

K. Lestari, U. Pasaribu, and S. Indratno, “Graphical depiction of three-way association in contingency table using higher-order singular value decomposition tucker3,” in Journal of Physics: Conference Series, vol. 1280, p. 022035, IOP Publishing, 2019. https://doi.org/10.1088/1742-6596/1280/2/022035.

H. A. Kiers, “Towards a standardized notation and terminology in multiway analysis,” Journal of Chemometrics: A Journal of the Chemometrics Society, vol. 14, no. 3, pp. 105–122, 2000. https://doi.org/10.1002/1099-128X.

T. G. Kolda, “Multilinear operators for higher-order decompositions,” tech. rep., Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, California, 2006. https://doi.org/10.2172/923081.

A. Carlier and P. M. Kroonenberg, “Decompositions and biplots in three-way correspondence analysis,” Psychometrika, vol. 61, pp. 355–373, 1996. https://doi.org/10.1007/BF02294344.

P. M. Kroonenberg and C. W. Snyder Jr, “Individual differences in assimilation resistance and affective responses in problem solving,” Multivariate Behavioral Research, vol. 24, no. 3, pp. 257–284, 1989. https://doi.org/10.1207/s15327906mbr2403_1.

P. Kroonenberg and J. Ten Berge, “The equivalence of tucker3 and parafac models with two components,” Chemometrics and Intelligent Laboratory Systems, vol. 106, no. 1, pp. 21–26, 2011. https://doi.org/10.1016/j.chemolab.2010.05.022.

P. M. Kroonenberg, Applied multiway data analysis. John Wiley & Sons, 2008. https://www.wiley.com/en-us/Applied+Multiway+Data+Analysis-p-9780470164976.

R. Lombardo and E. J. Beh, “Three-way correspondence analysis for ordinal-nominal variables,” in SIS 2017 Statistics and Data Science: New Challenges, New Generations, pp. 28–30, 2017. http://meetings3.sis-statistica.org/index.php/sis2017/sis2017/paper/view/499/0.

L. D’Ambra, B. Simonetti, and E. J. Beh, “A dimensional reduction method for ordinal three-way contingency table,” in Compstat 2006-Proceedings in Computational Statistics: 17th Symposium Held in Rome, Italy, 2006, pp. 271–283, Springer, 2006. https://doi.org/10.1007/978-3-7908-1709-6_21.

K. E. Lestari, M. R. Utami, and M. R. Yudhanegara, “Sequential exploratory design by performing correspondence analysis to investigate procedural fluency of undergraduate student,” in AIP Conference Proceedings, vol. 2588, AIP Publishing, 2023. https://doi.org/10.1063/5.0111974.

J. Levin, “Three-mode factor analysis.,” Psychological Bulletin, vol. 64, no. 6, pp. 442–452,1965. https://doi.org/10.1037/h0022603.

A. K. Smilde, R. Bro, and P. Geladi, Multi-way analysis: applications in the chemical sciences. John Wiley & Sons, 2004. https://doi.org/10.1002/0470012110.

R. Ellis, P. Kroonenberg, B. Harch, and K. Basford, “Non-linear principal components analysis: an alternative method for finding patterns in environmental data,” Environmetrics: The official journal of the International Environmetrics Society, vol. 17, no. 1, pp. 1–11, 2006. https://doi.org/10.1002/env.738.

P. M. Kroonenberg, R. A. Harshman, and T. Murakami, “Analysing three-way profile data using the parafac and tucker3 models illustrated with views on parenting,” Applied Multivariate Research, vol. 13, no. 1, pp. 5–41, 2009. https://doi.org/10.22329/amr.v13i1.2833.

M. Gallo and A. Buccianti, “Weighted principal component analysis for compositional data: application example for the water chemistry of the arno river (tuscany, central italy),” Environmetrics, vol. 24, no. 4, pp. 269–277, 2013. https://doi.org/10.1002/env.2214.

L. Li, R. Bai, J. Lu, S. Zhang, and C.-C. Chang, “A watermarking scheme for color image using quaternion discrete fourier transform and tensor decomposition,” Applied Sciences, vol. 11, no. 11, p. 5006, 2021. https://doi.org/10.3390/app11115006.

P. M. Kroonenberg and J. De Leeuw, “Principal component analysis of three-mode data by means of alternating least squares algorithms,” Psychometrika, vol. 45, pp. 69–97, 1980. https://doi.org/10.1007/BF02293599.

A. Kapteyn, H. Neudecker, and T. Wansbeek, “An approach to n-mode components analysis,” Psychometrika, vol. 51, pp. 269–275, 1986. https://doi.org/10.1007/BF02293984.

M. A. O. Vasilescu and D. Terzopoulos, “Multilinear analysis of image ensembles: Tensor-faces,” in Computer Vision—ECCV 2002: 7th European Conference on Computer Vision Copenhagen, Denmark, May 28–31, 2002 Proceedings, Part I 7, pp. 447–460, Springer, 2002. https://doi.org/10.1007/3-540-47969-4_30.

C. F. Van Loan, “Structured matrix computations from structured tensors,” 2015. Note CIME-EMS Summer School, Cornell University, Italia, June 22-26, 2015.

I. Ginanjar, U. Pasaribu, and A. Barra, “Simplification of correspondence analysis for more precise calculation which one qualitative variables is two categorical data,” ARPN Journal of Engineering and Applied Sciences, vol. 11, no. 3, pp. 1983–1991, 2016. http://www.arpnjournals.org/jeas/research_papers/rp_2016/jeas_0216_3592.pdf.

K. Lestari, U. Pasaribu, S. Indratno, and H. Garminia, “The reliability of crash car protection level based on the circle confidence region on the correspondence plot,” in IOP Conference Series: Materials Science and Engineering, vol. 598, p. 012061, IOP Publishing, 2019c. https://doi.org/10.1088/1757-899X/598/1/012061.

A. Agresti, Categorical Data Analysis. John Wiley & Sons, 2nd ed., 1990. https://doi.org/10.1002/0471249688.

Authors

Karunia Eka Lestari
karunia@staff.unsika.ac.id (Primary Contact)
Mokhammad Ridwan Yudhanegara
Edwin Setiawan Nugraha
Sisilia Sylviani
Lestari, K. E., Yudhanegara, M. R., Nugraha, E. S., & Sylviani, S. (2025). Tucker3 Tensor Decomposition for the Standardized Residual Hypermatrix on Three-Way Correspondence Analysis. Journal of the Indonesian Mathematical Society, 31(2), 1491. https://doi.org/10.22342/jims.v31i2.1491

Article Details

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)