Limiting Spectral Distributions of Random Matrices Having Equi-Correlated Normal Structure
Abstract
By rank inequalities, we show that the limiting spectral distribution of random matrices, which are Fisher matrices and Beta matrices composed of two independent samples from independent p-dimensional, centered normal populations such that all entries have unit variance and any correlation coefficient between different variables are fixed nonnegative r1, r2 < 1. Moreover, by similar method, we also present the limiting spectral distribution of Wigner matrices, Toeplitz matrices, and Hankel matrices of order p, where all entries are standard normal random variables and mutually correlated with a fixed nonnegative r < 1. However, the rank inequality for empirical spectral distributions is unable to show the limiting spectral distributions of Markov matrices and banded Toeplitz matrices because the perturbation matrices of those matrices have a rate rank 1.
Full text article
References
E. P. Wigner, “Characteristic vectors of bordered matrices with infinite dimensions,” Ann. Math., vol. 62, no. 3, pp. 548–564, 1955. https://www.jstor.org/stable/1970079.
E. P. Wigner, “On the distribution of the roots of certain symmetric matrices,” Ann. Math., vol. 67, no. 2, pp. 325–327, 1958. https://www.jstor.org/stable/1970008.
J. Yao, S. Zheng, and Z. D. Bai, Sample covariance matrices and high-dimensional data analysis. New York: Cambridge University Press, 2015. https://doi.org/10.1017/CBO9781107588080.
Z. D. Bai, Y. Q. Yin, and P. R. Krishnaiah, “On the limiting empirical distribution function of the eigenvalues of a multivariate F matrix,” Theory Probab. Its Appl., vol. 32, no. 3, pp. 490–500, 1988. https://doi.org/10.1137/1132067.
W. Bryc, A. Dembo, and T. Jiang, “Spectral measure of large random Hankel, Markov and Toeplitz matrices,” Ann. Probab., vol. 34, no. 1, pp. 1–38, 2006. https://doi.org/10.1214/009117905000000495.
V. Kargin, “Spectrum of random Toeplitz matrices with band structure,” Electron. Commun. Probab., vol. 14, pp. 412–423, 2009. https://doi.org/10.1214/ECP.v14-1492.
D. Paul and A. Aue, “Random matrix theory in statistics: A review,” J. Stat. Plan. Inference, vol. 150, pp. 1–29, 2014. https://doi.org/10.1016/j.jspi.2013.09.005.
V. A. Marˇcenko and L. Pastur, “Distribution of eigenvalues for some sets of random matrices,” Math USSR Sb., vol. 1, pp. 457–483, 1967. https://doi.org/10.1070/SM1967v001n04ABEH001994.
J. W. Silverstein, “The limiting eigenvalue distribution of a multivariate F matrix,” SIAM J. Math. Anal., vol. 16, no. 3, pp. 641–646, 1985. https://doi.org/10.1137/0516047.
Y. Q. Yin, “Limiting spectral distribution for a class of random matrices,” J. Multivar. Anal., vol. 20, no. 1, pp. 50–68, 1986. https://doi.org/10.1016/0047-259X(86)90019-9.
E. R. Berndt and N. E. Savin, “Estimation and hypothesis testing in singular equation systems with autoregressive disturbances,” Econometrica, pp. 937–957, 1975. https://doi.org/10.2307/1911336.
E. J. Elton and M. J. Gruber, “Estimating the dependence structure of share prices–implications for portfolio selection,” J. Finance., vol. 28, no. 5, pp. 1203–1232, 1973. https://doi.org/10.2307/2978758.
R. Engle and B. Kelly, “Dynamic equicorrelation,” J Bus Econ Stat., vol. 30, no. 2, pp. 212–228, 2012. https://doi.org/10.1080/07350015.2011.652048.
H. F. Kaiser, “A measure of the average intercorrelation,” Educ. Psychol. Meas., vol. 28, no. 2, pp. 245–247, 1968. https://doi.org/10.1177/001316446802800203.
Y. Akama and A. Husnaqilati, “A dichotomous behavior of guttman-kaiser criterion from equi-correlated normal population,” J. Indones. Math. Soc., vol. 28, no. 3, p. 272–303, 2022. https://jims-a.org/index.php/jimsa/article/view/1158.
J. W. Silverstein, “Strong convergence of the empirical distribution of eigenvalues of large dimensional random matrices,” J. Multivar. Anal., vol. 55, no. 2, pp. 331–339, 1995. https://doi.org/10.1006/jmva.1995.1083.
Z. D. Bai, “Methodologies in spectral analysis of large dimensional random matrices, a review,” Advances in statistics, pp. 174–240, 1999. http://www.jstor.org/stable/24306605.
R. A. Horn and C. R. Johnson, Matrix analysis. New York: Cambridge university press, 2nd ed., 2012. https://www.cambridge.org/jp/academic/subjects/mathematics/algebra/matrix-analysis-2nd-edition?format=PB&isbn=9780521548236.
Z. Bai and W. Zhou, “Large sample covariance matrices without independence structures in columns,” Stat. Sin., pp. 425–442, 2008. https://www.jstor.org/stable/24308489.
J. Hui and G. Pan, “Limiting spectral distribution for large sample covariance matrices with m-dependent elements,” Commun. Stat. - Theory Methods, vol. 39, no. 6, pp. 935–941, 2010. https://doi.org/doi.org/10.1080/03610920902807929.
J. Bryson, R. Vershynin, and H. Zhao, “Marchenko–Pastur law with relaxed independence conditions,” Random Matrices Theory Appl, p. 2150040, 2021. https://doi.org/10.1142/S2010326321500404.
F. Benaych-Georges and R. R. Nadakuditi, “The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices,” Adv. Math., vol. 227, no. 1, pp. 494–521, 2011. https://doi.org/10.1016/j.aim.2011.02.007.
Y. Akama, “Correlation matrix of equi-correlated normal population: Fluctuation of the largest eigenvalue, scaling of the bulk eigenvalues, and stock market,” Int. J. Theor. Appl. Finance, vol. 26, no. 02n03, p. 2350006, 2023. https://doi.org/10.1142/S0219024923500061.
Z. Bai and J. W. Silverstein, Spectral Analysis of Large Dimensional Random Matrices, vol. 20 of Springer Series in Statistics. New York: Springer, 2010. https://link.springer.com/book/10.1007/978-1-4419-0661-8.
Z. Bai, J. Hu, G. Pan, and W. Zhou, “Convergence of the empirical spectral distribution function of Beta matrices,” Bernoulli, vol. 21, no. 3, pp. 1538–1574, 2015. https://doi.org/10.3150/14-BEJ613.
P. J. Huber and E. M. Ronchetti, Robust Statistics. Hoboken, NJ: John Wiley & Sons, 2011. https://doi.org/10.1002/9780470434697.
Z. Bai, D. Jiang, J. Yao, and S. Zheng, “Corrections to LRT on large-dimensional covariance matrix by RMT,” Ann. Stat., vol. 37, no. 6B, pp. 3822–3840, 2009. https://doi.org/10.1214/09-AOS694.
T. W. Anderson, An Introduction to Multivariate Statistical Analysis. Hoboken: Wiley, 3rd ed., 2003.
H. Yoshida, “Remarks on a free analogue of the beta prime distribution,” J. Theor. Probab., vol. 33, no. 3, pp. 1363–1400, 2020. https://doi.org/10.1007/s10959-019-00924-x.
R. J. Muirhead, Aspects of multivariate statistical theory. Hoboken: John Wiley & Sons, 2009. https://doi.org/10.1002/9780470316559.
M. L. Mehta, Random matrices. Amsterdam: Elsevier, 3rd ed., 2004. https://www.elsevier.com/books/random-matrices/lal-mehta/978-0-12-088409-4.
C. Hammond and S. J. Miller, “Distribution of eigenvalues for the ensemble of real symmetric Toeplitz matrices,” J. Theor. Probab., vol. 18, no. 3, pp. 537–566, 2005. https://doi.org/10.1007/s10959-005-3518-5.
J. Ramey, Datamicroarray. R package version 1.14.4., 2013.
E. Gravier, G. Pierron, A. Vincent-Salomon, N. Gruel, V. Raynal, A. Savignoni, Y. De Rycke, J.-Y. Pierga, C. Lucchesi, F. Reyal, A. Fourquet, S. Roman-Roman, F. Radvanyi, X. Sastre-Garau, B. Asselain, and O. Delattre, “A prognostic dna signature for t1t2 node-negative breast cancer patients,” Genes Chromosomes Cancer, vol. 49, no. 12, pp. 1125–1134, 2010. https://doi.org/10.1002/gcc.20820.
Authors
Copyright (c) 2025 Journal of the Indonesian Mathematical Society

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.