Main Article Content

Abstract

Let G = (V, E) be a graph. An L(3,2,1) labeling of G is a function f : V → N ∪ {0} such that for every u, v ∈ V , |f(u) − f(v)| ≥ 3 if d(u, v) = 1, |f(u) − f(v)| ≥ 2 if d(u, v) = 2, and |f(u) − f(v)| ≥ 1 if d(u, v) = 3. Let k ∈ N, a k − L(3, 2, 1) labeling is a labeling L(3,2,1) where all labels are not greater than k. An L(3,2,1) number of G, denoted by λ(3,2,1)(G), is the smallest non-negative integer k such that G has a k − L(3,2,1) labeling. In this paper, we determine λ(3,2,1) of firecracker graphs.

Keywords

L(3,2,1) number firecracker graph

Article Details

How to Cite
Sarbaini, S., A.N.M., S., & Putra, G. L. (2023). L(3,2,1) Labeling of Firecracker Graph. Journal of the Indonesian Mathematical Society, 29(1), 24–35. https://doi.org/10.22342/jims.29.1.1177.24-35

References

  1. Chia, M. L., Kuo, D., Liao, H. Y., Yang, C. H., and Yeh, R. K. (2011): L(3,2,1) - Labeling of Simple Graphs. Taiwan J. Math., 15(6), 2439-2457.
  2. Clipperton, J., Gehrtz, J., Szaniszlo, Z., and Torkornoo, D. (2005): L(3,2,1)-Labeling of Simple Graphs, VERUM, Valparaiso University.
  3. Gallian, J. A (2011): Dynamic Survey of Graph Labeling. Electronic Journal of Combinatorics, 18. DS6
  4. Ganesha L.P., (2018): Pelabelan L(3,2,1) pada Beberapa Kelas Graf, Tesis Program Magister, Institut Teknologi Bandung.
  5. Hale, W.K. (1980): Frequency Assignment: Theory and Applications. Proc. IEEE, 68, 1497-1414
  6. Liu., J. Z. and Shao, Z. D. (2004): The L(3,2.1) Labeling Problem on Graphs. Mathematica Applicata, 17(4), 596-602

Most read articles by the same author(s)