L(3,2,1) Labeling of Firecracker Graph

Sarbaini Sarbaini (1) , Salman A.N.M. (2) , Ganesha Lapenangga Putra (3)
(1) Universitas Islam Negeri Sultan Syarif Kasim, Indonesia,
(2) Department of Mathematics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia,
(3) Department of Mathematics, Faculty of Sciences and Technology, Universitas Nusa Cendana, Indonesia

Abstract

Let G = (V, E) be a graph. An L(3,2,1) labeling of G is a function f : V → N ∪ {0} such that for every u, v ∈ V , |f(u) − f(v)| ≥ 3 if d(u, v) = 1, |f(u) − f(v)| ≥ 2 if d(u, v) = 2, and |f(u) − f(v)| ≥ 1 if d(u, v) = 3. Let k ∈ N, a k − L(3, 2, 1) labeling is a labeling L(3,2,1) where all labels are not greater than k. An L(3,2,1) number of G, denoted by λ(3,2,1)(G), is the smallest non-negative integer k such that G has a k − L(3,2,1) labeling. In this paper, we determine λ(3,2,1) of firecracker graphs.

Full text article

Generated from XML file

References

Chia, M. L., Kuo, D., Liao, H. Y., Yang, C. H., and Yeh, R. K. (2011): L(3,2,1) - Labeling of Simple Graphs. Taiwan J. Math., 15(6), 2439-2457.

Clipperton, J., Gehrtz, J., Szaniszlo, Z., and Torkornoo, D. (2005): L(3,2,1)-Labeling of Simple Graphs, VERUM, Valparaiso University.

Gallian, J. A (2011): Dynamic Survey of Graph Labeling. Electronic Journal of Combinatorics, 18. DS6

Ganesha L.P., (2018): Pelabelan L(3,2,1) pada Beberapa Kelas Graf, Tesis Program Magister, Institut Teknologi Bandung.

Hale, W.K. (1980): Frequency Assignment: Theory and Applications. Proc. IEEE, 68, 1497-1414

Liu., J. Z. and Shao, Z. D. (2004): The L(3,2.1) Labeling Problem on Graphs. Mathematica Applicata, 17(4), 596-602

Authors

Sarbaini Sarbaini
sarbaini@uin-suska.ac.id (Primary Contact)
Salman A.N.M.
Ganesha Lapenangga Putra
Sarbaini, S., A.N.M., S., & Putra, G. L. (2023). L(3,2,1) Labeling of Firecracker Graph. Journal of the Indonesian Mathematical Society, 29(1), 24–35. https://doi.org/10.22342/jims.29.1.1177.24-35

Article Details

Most read articles by the same author(s)