Main Article Content

Abstract

In this research paper, the concepts of uniform fuzzy modules and semiuniform fuzzy modules were studied. We discussed the necessary and sufficient conditions between uniform fuzzy modules (and semiuniform fuzzy modules) in fuzzy set theory and uniform modules (and semiuniform modules) in module theory.

Keywords

Uniform modules Uniform fuzzy modules Semiuniform modules Semiuniform fuzzy modules

Article Details

Author Biographies

samruam baupradist, Chulalongkorn University

Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

Burhan Chemat, Chulalongkorn University

Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

Ronnason Chinram, Prince of Songkla University

Algebra and Applications Research Unit, Division of Computational Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkla 90110 Thailand
How to Cite
baupradist, samruam, Chemat, B., & Chinram, R. (2022). Properties of Uniform Fuzzy Modules and Semiuniform Fuzzy Modules. Journal of the Indonesian Mathematical Society, 28(2), 133–146. https://doi.org/10.22342/jims.28.2.1127.133-146

References

  1. Abbas, H.H., “A Fuzzy Semi Essential Submodule of a Fuzzy Module”, J. Kufa Math. Comp., 1 (2012), 31-37.
  2. Abbas, H.H., “On Essential fuzzy submodule and uniform fuzzy module”, The First Scientific Conference the Collage of Education for Pure Sciences, 1 (2012), 213-222.
  3. Al-aeashi, S.N., “Completely Semi Essential Fuzzy Submodule”, J. Kufa Math. Comp., 2(2) (2014), 1-7.
  4. Ali, M.M., “Prime Fuzzy Submodules and Primary Fuzzy Submodules”, Int. J. Comp. Sci. Tech., 6(2) (2015), 212-216.
  5. Ali, S.M. and Nada, K.A., “Semi-Essential Submodules and Semi-Uniform Modules”, J. Kirkuk U. Sci. Stu., 4(1) (2009), 48-57.
  6. Hadi, I.M., “On Some Special Fuzzy Ideal of a Fuzzy Ring”, Accepted in I. Soc. of Phy. Math. (2000)
  7. Hamil, M.A., “Semiessential Fuzzy Ideals and Semiuniform Fuzzy Rings”, IBN AL-HAITHAM J. Pure & APPL. SCI., 22(4) (2009), 257-265.
  8. Hamil, M.A., “Semiprime Fuzzy Modules. Ibn Al-Haitham”, J. Pure & Appl. Sci., 25(1) (2012), 1-10.
  9. Kumar, R., “Fuzzy Semiprimary Ideals of Rings”, Fuzzy Sets and Systems, 42 (1991), 263-272.
  10. Lee, D.S. and Park, C.H., “On Fuzzy Prime Submodules of Fuzzy Multiplication Modules”, East Asian Math. J., 27(1) (2011), 75-82.
  11. Liu, W.J., “Fuzzy invariant subgroups and fuzzy ideal”, Fuzzy Sets and Systems, 8(2) (1982), 133-139.
  12. Malik, D.S. and Mordeson, J.N., “Fuzzy direct sums of fuzzy rings”, Fuzzy Sets and Systems, 45(1) (1992), 83-91.
  13. Mashinchi, M.M. and Zahedi, M., “On L-Fuzzy Primary Submodule”, Fuzzy Sets and Sys2 tems, 49(2) (1992), 231-136.
  14. Nagoita, X.V. and Ralescu, D.A., Applications of Fuzzy sets and System Analysis, Birkhauser, Basel, 1975.
  15. Nanda, S., “Fuzzy Modules over fuzzy rings”, Bull. Col. Math. Soc., 81 (1989), 197-200.
  16. Rabi, H.J., Prime Fuzzy Submosule and Prime Fuzzy Modules, M. Sc. Thesis, University of Baghdad, Baghdad, Iraq, 2001.
  17. Rosenfeld, A. “Fuzzy groups”, J. Math Anal. Appl., 35(3) (1971), 512-517.
  18. Wisbauer, R., Foundations of Module and Ring Theory, Gordon and Breach, London, Tokyo, 1991.
  19. Zadeh, L.A., “Fuzzy Sets”, Inf. and Cont., 8(3) (1965), 338-353.
  20. Zahedi, M.M., “Some Results on L-Fuzzy Modules”, Fuzzy Sets and Systems, 55(3) (1993),