Main Article Content

Abstract

Let $X$ be a complete separable metric space and $Y$ be a separable Banach space. We provide a proof of equivalence by linking explicitly the following statements:\\
\noindent \textbf{\textit{Lebesgue's Theorem.}} For every $\epsilon>0$ there exists a countable collection of closed sets $\left\lbrace C_n\right\rbrace $ of $X$ such that $$X=\bigcup_{n=1}^{\infty}C_n\;\;\text{and}\;\; \omega_f\left( C_n\right)<\epsilon\;\; \text{for each} \;\; n.$$
\textbf{\textit{Baire Characterization Theorem.}} For every nonempty perfect set $K\subset X$, the function $f|_K$ has at least one point of continuity in $K$. In fact, $C(f|_K)$ is dense in $K$.\\
\indent Moreover, replacing ``closed'' by ``open'' in the Lebesgue's Theorem, we obtain a characterization of continuous functions on space $X$.

Keywords

Baire class one Lebesgue's theorem Baire Characterization Theorem

Article Details

How to Cite
Fenecios, J., & Racca, A. (2022). Equivalence of Lebesgue’s Theorem and Baire Characterization Theorem. Journal of the Indonesian Mathematical Society, 28(2), 158–163. https://doi.org/10.22342/jims.28.2.1064.158-163

References

  1. Baire, R., Sur les fonctions des variables reeles, Ann. Mat. Pura ed Appl., 3 (1899), 1122.
  2. Bressoud, D. M., A Radical Approach To Lebesgues Theory of Integration, Cambridge University Press, United States of America, 2008.
  3. Gordon, R. A., The Integrals of Lebesgue, Denjoy, Perron and Henstock, 4, American Mathematical Society, 1994.
  4. Kuratowski, K., Topology, Academic Press, London, 1966.
  5. Lee, P.Y., Tang, W.K., and Zhao, D., An equivalent Definition of Functions of the First Baire Class, Proc.Amer. Math. Soc., 129:8 (2001), 2273-2275