Main Article Content

Abstract

The notion of a belligerent GE-filter in a GE-algebra is introduced, and the relationships between a GE-filter and a belligerent GE-filter will be given. Conditions for a GE-filter to be a belligerent GE-filter are provided. The product and the union of GE-algebras are discussed and its properties are investigated.

Keywords

Commutative Transitive Left exchangeable GE-Algebra GE-Filter Belligerent Belligerent GE-filter

Article Details

How to Cite
Bandaru, R., Borumand Saeid, A., & Jun, Y. B. (2022). Belligerent GE-filters in GE-Algebras. Journal of the Indonesian Mathematical Society, 28(1), 31–43. https://doi.org/10.22342/jims.28.1.1056.31-43

References

  1. Bandaru, R., Saeid, A. B., and Jun, Y. B., “On GE-algebras”, Bull. Sect. Log., 50:1 (2021), 81–96. https://doi.org/10.18778/0138-0680.2020.20
  2. Borzooei, R. A. and Shohani, J., “On generalized Hilbert algebras”, Ital. J. Pure Appl. Math., 29 (2012), 71–86.
  3. Chajda, I. and Halas, R., “Congruences and idealas in Hilbert algebras”, Kyungpook Math. J., 39 (1999), 429–432.
  4. Chajda, I., Halas, R. and Jun, Y. B., “Annihilators and deductive systems in commutative Hilbert algebras”, Comment. Math. Univ. Carolinae, 43:3 (2002), 407–417.
  5. Diego, A., Sur les algebres de Hilbert, Collection de Logique Mathematique, Edition Hermann, Serie A, XXI, 1966.
  6. Jun, Y. B., “Commutative Hilbert algebras”, Soochow J. Math., 22:4 (1996), 477–484.
  7. Jun, Y. B. and Kim, K. H., H-filters of Hilbert algebras, Sci. Math. Jpn., e-2005, 231- 236.
  8. Najafi, A. and Borumand Saeid, A., “Fuzzy points in BE-algebras”, J. Mahani Math. Research Center, 8:1-2 (2019). 69-80. DOI: 10.22103/jmmrc.2019.12457.1065
  9. Nasab, A. S. and Borumand Saeid, A., “Semi maximal filter in Hilbert algebras”, J. Intell. Fuzzy Syst., 30 (2016), 7–15. DOI:10.3233/IFS-151706
  10. Nasab, A. S. and Borumand Saeid, A., “Stonean Hilbert algebra”, J. Intell. Fuzzy Syst., 30 (2016), 485–492. DOI:10.3233/IFS-151773
  11. Nasab, A. S. and Borumand Saeid, A., “Study of Hilbert algebras in point of filters”, An St. Univ. Ovidius Constanta, 24:2 (2016), 221–251. DOI: 10.1515/auom-2016-003

Most read articles by the same author(s)