On Energy of Prime Ideal Graph of A Commutative Ring Associated with Seidel-Based Matrices

Mamika Ujianita Romdhini^{1*}

Department of Mathematics, University of Mataram, Indonesia, mamika@unram.ac.id

Abstract. Some energies of the prime ideal graph are found for a commutative ring associated with Seidel-based matrices including Seidel, Seidel Laplacian, and Seidel signless Laplacian matrices.

 $Key\ words\ and\ Phrases:$ Prime ideal graph, the energy of a graph, commutative ring, Seidel-based matrices

1. INTRODUCTION

In the study of mathematical chemistry, the discussion focuses on chemical graph theory [1]. The graph energy is described as pi-electron energy by considering the molecule as a graph [2]. The graph energy applications can be found in several research including the study of protein sequences [3], pattern and facial recognition [4], and object identification [5].

Initially in the graph, the energy is constructed from its adjacency matrix. Nowadays, the discussion of graph matrices is extended to degree or distance-based and Seidel-based matrices. This research focuses on the Seidel-based matrices, including Seidel [6], Seidel Laplacian [7], and Seidel signless Laplacian matrices [8].

Furthermore, graphs defined on group and ring are interesting topics in the last few decades, for instance, the prime ideal graph [9]. The topology properties of this graph have been done by Syarifudin, et al. [10] with the following definition.

Definition 1.1. [9] The prime ideal graph is represented by $\Omega(R, I)$, where R is any commutative ring as the vertex set excluding $\{0\}$, I is its prime ideal which two distinct vertices u and v are linking with an edge whenever $uv \in I$.

Through the years, discussion on the Seidel energy of a graph has developed. In 2021, Sarmin, et al. [11] presented the Seidel energy of the Cayley graph,

^{*}Corresponding author

²⁰²⁰ Mathematics Subject Classification: 05C25, 15A18 Received: 27-05-2024, accepted: 06-11-2024.

Mamika U.R.

and Romdhini, et al. [12] investigated the Seidel-based energies of the commuting graph. Both research are constructed from the dihedral groups. Moreover, the Seidel matrix is also applied to the commuting graph for U_{6n} group [13].

The above background motivated us to extend the study to $\Omega(R, I)$ where R is associated with the Seidel-based matrices. In Section 2, we write several results from the previous literature. Then the formulation of energies is presented in Section 3.

2. PRELIMINARIES

In this part, we shall discuss the fundamental properties of $\Omega(R, I)$. First, we show the result from the previous literature from [10].

Let the cardinality of R is η , with $R \setminus \{0\} = \{p_1, p_2, \ldots, p_\mu, r_1, r_2, \ldots, r_{\eta-\mu-1}\}$ and $I = \{p_1, p_2, \ldots, p_\mu\}$. Let d_{v_p} be the degree of vertex v_p in $\Omega(R, I)$ which is the number of vertices adjacent to v_p . The distance between v_p and v_q in $\Omega(R, I)$ is the number of edges in the shortest path from v_p to v_q and is denoted by d_{pq} .

Theorem 2.1. (Lemma 2.1 in [10]) The vertex degree of v_p in $\Omega(R, I)$ is

$$d_{v_p} = \begin{cases} \eta - 2, & \text{for every } v_p \in I \setminus \{0\} \\ \mu - 1, & \text{for every } v_p \in R \setminus I. \end{cases}$$

Afterward, the distance between two vertices was explored in [10].

Theorem 2.2. (Lemma 2.2 in [10]) The distance between v_p and v_q in $\Omega(R, I)$ is given by

$$d_{pq} = \begin{cases} 1, & \text{for every } v_p \in I \setminus \{0\} \text{ and } v_q \in R \\ 2, & \text{for every } v_p, v_q \in R \setminus I. \end{cases}$$

For the construction of the Seidel matrix of $\Omega(R, I)$, we need the following definition.

Definition 2.3. [6] An $n \times n$ Seidel matrix of $\Omega(R, I)$ is $S(\Omega(R, I)) = [s_{pq}]$ in which (p, q)-th entry is

$$s_{pq} = \begin{cases} -1, & \text{if } v_p \neq v_q \text{ are adjacent} \\ 1, & \text{if } v_p \neq v_q \text{ are not adjacent} \\ 0, & \text{otherwise.} \end{cases}$$

Let $S(\Omega(R, I))$ be the degree matrix of $\Omega(R, I)$ as $Diag(d_{v_1}, d_{v_2}, \ldots, d_{v_n})$. Now the Seidel-based definitions of $\Omega(R, I)$ are given below.

Definition 2.4. [7] An $n \times n$ Seidel Laplacian matrix of $\Omega(R, I)$ is

$$SL(\Omega(R, I)) = D(\Omega(R, I)) - S(\Omega(R, I)).$$

Definition 2.5. [8] An $n \times n$ Seidel signless Laplacian matrix of $\Omega(R, I)$ is $SSL(\Omega(R, I)) = D(\Omega(R, I)) + S(\Omega(R, I)).$

 $\mathbf{2}$

Suppose $\lambda_1, \lambda_2, \ldots, \lambda_n$ are *n* numbers that stated as eigenvalues of $S(\Omega(R, I))$, hence the spectrum of $S(\Omega(R, I))$ is

$$Spec_{S}(\Omega(R, I)) = \left\{\lambda_{1}^{k_{1}}, \lambda_{2}^{k_{2}}, \dots, \lambda_{m}^{k_{m}}\right\},\$$

where k_1, k_2, \ldots, k_m are the respective multiplicities, and $m \leq n$. The Seidel energy of $\Omega(R, I)$ [2] is written by

$$E_S(\Omega(R,I)) = \sum_{i=1}^m k_i |\lambda_i|, \qquad (1)$$

and the Seidel-spectral radius of $\Omega(R, I)$ [14] is

 $\rho_S(\Omega(R, I)) = max\{|\lambda| : \lambda \in Spec_s(\Omega(R, I))\}.$

The above definitions also apply to $SL(\Omega(R, I))$ as well as $SSL(\Omega(R, I))$. Suppose I_n is the identity matrix of order n and J_n is $n \times n$ square matrix with all entries are 1. Furthermore, for calculating the eigenvalues of $\Omega(R, I)$, we need the following formulation of the determinant.

Lemma 2.6. (Lemma 2.2 in [15]) For real numbers $\alpha, \beta, \gamma, \delta$, the determinant of

$$\begin{vmatrix} (\lambda + \alpha)I_{n_1} - \alpha J_{n_1} & -\gamma J_{n_1 \times n_2} \\ -\delta J_{n_2 \times n_1} & (\lambda + \beta)I_{n_2} - \beta J_{n_2} \end{vmatrix}$$

can be declared in simple formula as

$$(\lambda + \alpha)^{n_1 - 1} (\lambda + \beta)^{n_2 - 1} \left((\lambda - (n_1 - 1)\alpha)(\lambda - (n_2 - 1)\beta) - n_1 n_2 \gamma \delta \right).$$

3. MAIN RESULTS

This section presents the $\Omega(R, I)$ energy corresponding with Seidel-based matrices. Firstly, we need to show the simplification of the following determinants.

Theorem 3.1. For real numbers α, β, γ , the determinant of

$$|M| = \begin{vmatrix} (\lambda - \alpha + \beta)I_{\mu} & -\beta J_{\mu} & -\beta J_{\mu \times (\eta - \mu - 1)} \\ -\beta J_{(\eta - \mu - 1) \times \mu} & (\lambda - \gamma + \beta)I_{\eta - \mu - 1} + \beta J_{\eta - \mu - 1} \end{vmatrix}$$

can be declared in simple form as

$$(\lambda - \alpha + \beta)^{\mu - 1} (\lambda - \beta - \gamma)^{\eta - \mu - 2} \left((\lambda - \alpha - \beta(\mu - 1))(\lambda - \gamma + (\eta - \mu - 2)\beta) - \beta^2 \mu(\eta - \mu - 1) \right)$$

Proof. We apply some row and column operations. Let R_i be the *i*-th row and we denote C_i as the *i*-column of |M|. The first step, substitute R_{1+i} with $R'_{1+i} = R_{1+i} - R_i$ where $1 \le i \le \mu - 1$ and substitute $R_{\mu+1+i}$ with $R'_{\mu+1+i} = R_{\mu+1+i} - R_{\mu+1}$ in which $1 \le i \le \eta - \mu - 2$, thus

$$|M| = \begin{vmatrix} \lambda - \alpha & -\beta J_{1 \times (\mu - 2)} & -\beta & -\beta J_{1 \times (\eta - \mu - 2)} \\ -(\lambda - \alpha + \beta) J_{(\mu - 2) \times 1} & (\lambda - \alpha + \beta) I_{\mu - 2} & 0_{(\mu - 2) \times 1} & 0_{\eta - \mu - 2} \\ -\beta & -\beta J_{1 \times (\mu - 2)} & \lambda - \delta & \beta J_{1 \times (\eta - \mu - 2)} \\ 0_{(\eta - \mu - 2) \times 1} & 0_{\mu - 2} & (\lambda - \delta - \beta) J_{(\eta - \mu - 2) \times 1} & (\lambda - \delta - \beta) I_{\eta - \mu - 2} \end{vmatrix}$$

Mamika U.R.

Furthermore, we replace C_1 with $C'_1 = C_1 + C_2 + \ldots + C_{\mu-1}$ and replace C_{μ} with $C'_{\mu} = C_{\mu} + C_{\mu+1} + \ldots + C_{\eta-2}$, then we have

$$|M| = \begin{vmatrix} \lambda - \alpha - \beta(\mu - 1) & -\beta J_{1 \times (\mu - 2)} & -\beta(\eta - \mu - 1) & -\beta J_{1 \times (\eta - \mu - 2)} \\ 0_{(\mu - 2) \times 1} & (\lambda - \alpha + \beta) I_{\mu - 2} & 0_{(\mu - 2) \times 1} & 0_{\eta - \mu - 2} \\ -\beta \mu & -\beta J_{1 \times (\mu - 2)} & \lambda - \delta + (\eta - \mu - 2)\beta & \beta J_{1 \times (\eta - \mu - 2)} \\ 0_{(\eta - \mu - 2) \times 1} & 0_{\mu - 2} & 0_{(\eta - \mu - 2) \times 1} & (\lambda - \delta - \beta) I_{\eta - \mu - 2} \end{vmatrix}.$$

We replace R_{μ} with $R'_{\mu} = R_{\mu} + \frac{\beta}{\lambda - \alpha + \beta} R_2 + \frac{\beta}{\lambda - \alpha + \beta} R_3 + \ldots + \frac{\beta}{\lambda - \alpha + \beta} R_{\mu-1}$ and following by replacing C_1 with $C'_1 = C_1 + \frac{\beta\mu}{\lambda - \delta + (\eta - \mu - 1)\beta} C_{\mu}$, then we have

$$|M| = \begin{vmatrix} u & -\beta J_{1\times(\mu-2)} & -\beta(\eta-\mu-1) & -\beta J_{1\times(\eta-\mu-2)} \\ 0_{(\mu-2)\times1} & (\lambda-\alpha+\beta)I_{\mu-2} & 0_{(\mu-2)\times1} & 0_{\eta-\mu-2} \\ 0 & 0_{1\times(\mu-2)} & \lambda-\delta+(\eta-\mu-2)\beta & \beta J_{1\times(\eta-\mu-2)} \\ 0_{(\eta-\mu-2)\times1} & 0_{\mu-2} & 0_{(\eta-\mu-2)\times1} & (\lambda-\delta-\beta)I_{\eta-\mu-2} \end{vmatrix},$$

with $u = \lambda - \alpha - \beta(\mu - 1) + \frac{\beta\mu}{\lambda - \delta + (\eta - \mu - 2)\beta} (-\beta(\eta - \mu - 1))$. Equation 2 is an upper diagonal matrix, hence

$$|M| = (\lambda - \alpha + \beta)^{\mu - 1} (\lambda - \beta - \delta)^{\eta - \mu - 2} \left((\lambda - \alpha - \beta(\mu - 1))(\lambda - \delta + (\eta - \mu - 2)\beta) - \beta^2 \mu(\eta - \mu - 1) \right).$$

3.1. Seidel Energy. This part demonstrates the Seidel energy of $\Omega(R, I)$.

Theorem 3.2. The characteristic formula of $S(\Omega(R, I))$ is $P_{S(\Omega(R,I))}(\lambda) = (\lambda - 1)^{\mu - 1} (\lambda + 1)^{\eta - \mu - 2} \left(\lambda^2 + (2\mu - \eta + 1)\lambda + 2\mu(\mu - \eta + 1) + \eta - 2\right).$

Proof. Let $R \setminus \{0\} = \{p_1, p_2, \ldots, p_\mu, r_1, r_2, \ldots, r_{\eta-\mu-1}\}$ and $I = \{p_1, p_2, \ldots, p_\mu\}$. We have $\eta - 1$ vertices for $\Omega(R, I)$. By Definition 2.3 and Theorem 2.1, we obtain the Seidel matrix of $\Omega(R, I)$ as $(\eta - 1) \times (\eta - 1)$ matrix as follows:

We can choose the partition such that

$$S(\Omega(R,I)) = \begin{pmatrix} (I-J)_{\mu} & -J_{\mu\times(\eta-\mu-1)} \\ -J_{(\eta-\mu-1)\times\mu} & (J-I)_{\eta-\mu-1} \end{pmatrix}.$$

The formulation of characteristic polynomial of $S(\Omega(R, I))$ is presented below:

$$P_{S(\Omega(R,I))}(\lambda) = \begin{vmatrix} (\lambda-1)I_{\mu} + J_{\mu} & J_{\mu \times (\eta-\mu-1)} \\ J_{(\eta-\mu-1)\times\mu} & (\lambda+1)I_{\eta-\mu-1} - J_{\eta-\mu-1} \end{vmatrix}.$$

By Lemma 2.6 with
$$\alpha = \gamma = \delta = -1$$
, $\beta = 1$, $n_1 = \mu$, $n_2 = \eta - \mu - 1$, then we get

$$P_{S(\Omega(R,I))}(\lambda) = (\lambda - 1)^{\mu - 1} (\lambda + 1)^{\eta - \mu - 2} \left(\lambda^2 + (2\mu - \eta + 1)\lambda + 2\mu(\mu - \eta + 1) + \eta - 2\right)$$

As a consequence of the above fact, we present our results as follows:

Theorem 3.3. The spectral radius of $\Omega(R, I)$ associated with the Seidel matrix is

$$\rho_S(\Omega(R,I)) = \frac{\eta - 2\mu - 1 + \sqrt{4\mu(\eta - 1 - \mu) + (\eta - 3)^2)}}{2}.$$

Proof. Based on Theorem 3.2, the roots of $P_{S(\Omega(R,I))}(\lambda) = 0$ are eigenvalues of $S(\Omega(R,I))$ or in other words,

$$(\lambda - 1)^{\mu - 1} (\lambda + 1)^{\eta - \mu - 2} (\lambda^2 + (2\mu - \eta + 1)\lambda + 2\mu(\mu - \eta + 1) + \eta - 2) = 0.$$
(4)

Equation 4 holds if and only if

$$(\lambda - 1)^{\mu - 1} = 0, \ (\lambda + 1)^{\eta - \mu - 2} = 0,$$
 (5)

and

$$\lambda^{2} + (2\mu - \eta + 1)\lambda + 2\mu(\mu - \eta + 1) + \eta - 2 = 0.$$
 (6)

Therefore, we obtain $\lambda_1 = 1$ with multiplicity $\mu - 1$ and $\lambda_2 = -1$ with multiplicity $\eta - \mu - 2$ conforming Equation 5. The quadratic formula in Equation 6 gives 2 eigenvalues $\lambda_{3,4} = \frac{\eta - 2\mu - 1 \pm \sqrt{4\mu(\eta - 1 - \mu) + (\eta - 3)^2}}{2}$. According to this fact, we get the spectrum of $\Omega(R, I)$, $Spec_S(\Omega(R, I))$ as follows:

$$\left[\begin{array}{ccc} \frac{\eta - 2\mu - 1 + \sqrt{4\mu(\eta - 1 - \mu) + (\eta - 3)^2}}{2} & 1 & -1 & \frac{\eta - 2\mu - 1 - \sqrt{4\mu(\eta - 1 - \mu) + (\eta - 3)^2}}{2} \\ 1 & \mu - 1 & \eta - \mu - 2 & 1 \end{array}\right].$$

This leads to the Seidel spectral radius of $\Omega(R, I)$ as

$$\rho_S(\Omega(R,I)) = \frac{\eta - 2\mu - 1 + \sqrt{4\mu(\eta - 1 - \mu) + (\eta - 3)^2}}{2},$$

and we complete the proof.

Using the fact from Theorem 3.3, we now compute the Seidel energy of $\Omega(R,I).$

Theorem 3.4. The Seidel energy of $\Omega(R, I)$ is

$$E_S(\Omega(R, I)) = \eta - 3 + \sqrt{4\mu(\eta - 1 - \mu) + (\eta - 3)^2}.$$

Proof. According to the spectrum of $\Omega(R, I)$ in the proofing part of Theorem 3.3, the Seidel energy of $\Omega(R, I)$ can be obtained as

$$E_S(\Omega(R,I)) = (\mu - 1)|1| + (\eta - \mu - 2)| - 1| + \left| \frac{\eta - 2\mu - 1 \pm \sqrt{4\mu(\eta - 1 - \mu) + (\eta - 3)^2}}{2} \right| = \eta - 3 + \sqrt{4\mu(\eta - 1 - \mu) + (\eta - 3)^2}.$$

3.2. Seidel Laplacian Energy. This subsection derives the Seidel Laplacian energy of $\Omega(R, I)$.

Theorem 3.5. The characteristic polynomial of $SL(\Omega(R, I))$ is $P_{SL(\Omega(R,I))}(\lambda) = (\lambda - \mu + 2)^{\mu - 1} (\lambda - \eta + 1)^{\eta - \mu - 2} (\lambda^2 - (3\mu - 2)\lambda + \mu(3\mu - \eta - 1)).$

Proof. The construction of the Seidel Laplacian matrix of $\Omega(R, I)$ is dependent on the degree matrix of $\Omega(R, I)$, $D(\Omega(R, I))$. By Theorem 2.1, we provide $D(\Omega(R, I))$ as $(\eta - 1) \times (\eta - 1)$ matrix:

(7)

By Definition 2.4, Equations 3 and 7, we provide the Seidel Laplacian matrix of $\Omega(R, I)$ as given below:

From Equation 8, we obtain:

$$SL(\Omega(R,I)) = \begin{pmatrix} (\mu-2)I_{\mu} + J_{\mu} & J_{\mu \times (\eta-\mu-1)} \\ J_{(\eta-\mu-1) \times \mu} & (\eta-1)I_{\eta-\mu-1} - J_{\eta-\mu-1} \end{pmatrix}$$

Therefore, we get

$$P_{SL(\Omega(R,I))}(\lambda) = \begin{vmatrix} (\lambda - \mu + 2)I_{\mu} - J_{\mu} & -J_{\mu \times (\eta - \mu - 1)} \\ -J_{(\eta - \mu - 1) \times \mu} & (\lambda - \eta + 1)I_{\eta - \mu - 1} + J_{\eta - \mu - 1} \end{vmatrix}.$$

By Lemma 3.1 with
$$\alpha = \mu - 1$$
, $\beta = 1$, and $\gamma = \eta - 2$, then we obtain
$$P_{SL(\Omega(R,I))}(\lambda) = (\lambda - \mu + 2)^{\mu - 1} (\lambda - \eta + 1)^{\eta - \mu - 2} \left(\lambda^2 - (3\mu - 2)\lambda + \mu(3\mu - \eta - 1)\right)$$

Theorem 3.6. The spectral radius of $\Omega(R, I)$ associated with the Seidel Laplacian matrix is

$$\rho_{SL}(\Omega(R,I)) = \frac{3\mu - 2 + \sqrt{(3\mu - 3)^2 - 4\mu(3\mu - \eta - 1)}}{2}.$$

Proof. We already observed $P_{SL(\Omega(R,I))}(\lambda)$ in Theorem 3.5. By a similar argument, the roots of $P_{SL(\Omega(R,I))}(\lambda) = 0$ provides the eigenvalues of $\Omega(R, I)$. Now we have

$$(\lambda - \mu + 2)^{\mu - 1} (\lambda - \eta + 1)^{\eta - \mu - 2} (\lambda^2 - (3\mu - 2)\lambda + \mu(3\mu - \eta - 1)) = 0.$$
(9)

With a similar idea of Equation 4, then Equation 9 holds whenever

$$(\lambda - \mu + 2)^{\mu - 1} = 0, \ (\lambda - \eta + 1)^{\eta - \mu - 2} = 0, \tag{10}$$

and

$$\left(\lambda^2 - (3\mu - 2)\lambda + \mu(3\mu - \eta - 1)\right) = 0.$$
(11)

Equation 10 derives $\lambda_1 = \mu - 2$ with multiplicity $\mu - 1$ and $\lambda_2 = \eta - 1$ of multiplicity $\eta - \mu - 2$. The quadratic formula of f Equation 11 result $\lambda_{3,4} = \frac{3\mu - 2\pm \sqrt{(3\mu - 3)^2 - 4\mu(3\mu - \eta - 1)}}{2}$. That means the spectrum of $\Omega(R, I)$ as given by

$$\left[\begin{array}{ccc} \frac{3\mu-2+\sqrt{(3\mu-3)^2-4\mu(3\mu-\eta-1)}}{2} & \mu-2 & \eta-1 & \frac{3\mu-2-\sqrt{(3\mu-3)^2-4\mu(3\mu-\eta-1)}}{2} \\ 1 & \mu-1 & \eta-\mu-2 & 1 \end{array}\right].$$

The Seidel Laplacian spectral radius of $\Omega(R, I)$ is

$$\rho_{SL}(\Omega(R,I)) = \frac{3\mu - 2 + \sqrt{(3\mu - 3)^2 - 4\mu(3\mu - \eta - 1)}}{2},$$

and this states that the proof of the theorem is equipped.

As a result of the above fact, we derive here is a straightforward result that counts the SL-energy of $\Omega(R, I)$.

Theorem 3.7. The SL-energy of $\Omega(R, I)$ is

$$E_{SL}(\Omega(R, I)) = (\eta - 2)(\eta - 1) + \mu(\mu - \eta + 1).$$

Proof. In accordance with the spectrum of $\Omega(R, I)$ in the proofing part of Theorem 3.6, the Seidel Laplacian energy of $\Omega(R, I)$ can be obtained as

$$E_{SL}(\Omega(R,I)) = (\mu - 1)|\mu - 2| + (\eta - \mu - 2)|\eta - \mu - 1| + \left| \frac{3\mu - 2 \pm \sqrt{(3\mu - 3)^2 - 4\mu(3\mu - \eta - 1)}}{2} \right|$$
$$= (\eta - 2)(\eta - 1) + \mu(\mu - \eta + 1).$$

3.3. Seidel Signless Laplacian Energy. This section focuses on the Seidel signless Laplacian matrix of $\Omega(R, I)$.

Theorem 3.8. The characteristic formula of
$$SSL(\Omega(R, I))$$
 is

$$P_{SSL(\Omega(R,I))}(\lambda) = (\lambda - \mu)^{\mu-1}(\lambda - \eta + 3)^{\eta-\mu-2} \left(\lambda^2 + (\mu - 2\eta + 4)\lambda - \mu(\eta - \mu - 1)\right).$$

Proof. By reasoning similar to the proof of Theorem 3.5, by Definition 2.5, Equations 3 and 7, we construct the Seidel signless Laplacian matrix of $\Omega(R, I)$ as $(\eta - 1) \times (\eta - 1)$ matrix as follows:

It follows that

$$SSL(\Omega(R,I)) = \begin{pmatrix} \mu I_{\mu} - J_{\mu} & -J_{\mu \times (\eta - \mu - 1)} \\ -J_{(\eta - \mu - 1) \times \mu} & (\eta - 3)I_{\eta - \mu - 1} + J_{\eta - \mu - 1} \end{pmatrix}$$

This implies

$$P_{SSL(\Omega(R,I))}(\lambda) = \begin{vmatrix} (\lambda - \mu)I_{\mu} + J_{mu} & J_{\mu \times (\eta - \mu - 1)} \\ J_{(\eta - \mu - 1) \times \mu} & (\lambda - \eta + 3)I_{\eta - \mu - 1} - J_{\eta - \mu - 1} \end{vmatrix}.$$

By Lemma 3.1 with $\alpha = \mu - 1$, $\beta = -1$, and $\gamma = \eta - 2$, then we get

$$P_{SSL(\Omega(R,I))}(\lambda) = (\lambda - \mu)^{\mu - 1} (\lambda - \eta + 3)^{\eta - \mu - 2} \left(\lambda^2 + (\mu - 2\eta + 4)\lambda - \mu(\eta - \mu - 1)\right)$$

Theorem 3.9. The spectral radius of $\Omega(R, I)$ associated with the Seidel Laplacian matrix is

$$\rho_{SSL}(\Omega(R,I)) = \frac{2\eta - \mu - 4 + \sqrt{(\mu - 2\eta + 4)^2 + 4\mu(\eta - \mu - 1)}}{2}.$$

Proof. According to Theorem 3.8, the roots of $P_{SSL(\Omega(R,I))}(\lambda) = 0$ are eigenvalues of $SL(\Omega(R,I))$, or in other words

$$(\lambda - \mu)^{\mu - 1} (\lambda - \eta + 3)^{\eta - \mu - 2} \left(\lambda^2 + (\mu - 2\eta + 4)\lambda - \mu(\eta - \mu - 1) \right) = 0.$$

We consider the above equation and it holds if and only if

$$(\lambda - \mu)^{\mu - 1}, \ (\lambda - \eta + 3)^{\eta - \mu - 2} = 0,$$
 (12)

and

$$\left(\lambda^2 + (\mu - 2\eta + 4)\lambda - \mu(\eta - \mu - 1)\right) = 0.$$
(13)

Therefore, from Equation 12 we obtain $\lambda_1 = \mu$ with multiplicity $\mu - 1$, and $\lambda_2 = \eta - 3$ of multiplicity $\eta - \mu - 2$. The solution of quadratic formula in Equation 13 are $\lambda_{3,4} = \frac{2\eta - \mu - 4 \pm \sqrt{(\mu - 2\eta + 4)^2 + 4\mu(\eta - \mu - 1)}}{2}$. According to this fact, we get the spectrum of $\Omega(R, I)$, $Spec_S(\Omega(R, I))$ as follows:

$$\left[\begin{array}{ccc} \frac{2\eta-\mu-4+\sqrt{(\mu-2\eta+4)^2+4\mu(\eta-\mu-1)}}{2} & \mu & \eta-3 & \frac{2\eta-\mu-4-\sqrt{(\mu-2\eta+4)^2+4\mu(\eta-\mu-1)}}{2} \\ 1 & \mu-1 & \eta-\mu-2 & 1 \end{array}\right]$$

This leads to the Seidel Laplacian spectral radius of $\Omega(R, I)$ as

$$\rho_{SSL}(\Gamma(R,P)) = \frac{2\eta - \mu - 4 + \sqrt{(\mu - 2\eta + 4)^2 + 4\mu(\eta - \mu - 1)}}{2}.$$

The next theorem presents the energy of $\Omega(R,I)$ with respect to the Seidel signless Laplacian matrix.

Theorem 3.10. The SSL-energy of $\Omega(R, I)$ is

 $E_{SSL}(\Omega(R,I)) = (\eta - 3)(\eta - 2) + \mu(\mu - \eta + 2) + \sqrt{(\mu - 2\eta + 4)^2 + 4\mu(\eta - \mu - 1)}.$

Proof. By using the spectrum of $\Gamma(R, P)$, the Seidel signless Laplacian energy of $\Omega(R, I)$ can be calculated as

$$E_{SSL}(\Omega(R,I)) = (\mu - 1)|\mu - 2| + (\eta - \mu - 2)|\eta - \mu - 1| + \left| \frac{3\mu - 2 \pm \sqrt{(\mu - 2\eta + 4)^2 + 4\mu(\eta - \mu - 1)}}{2} \right|$$
$$= (\eta - 3)(\eta - 2) + \mu(\mu - \eta + 2) + \sqrt{(\mu - 2\eta + 4)^2 + 4\mu(\eta - \mu - 1)}.$$

Mamika U.R.

4. CONCLUDING REMARKS

In this research, we derive the spectrum, spectral radius, and energy of the prime ideal graph. It is associated with the commutative ring and corresponds to the Seidel-based matrices.

Acknowledgement. We would like to thank the University of Mataram, Indonesia, for the partial funding assistance that has been provided.

REFERENCES

- D. J. Klein, "Mathematical chemistry! is it? and if so, what is it?," Hyle: International Journal for Philosophy of Chemistry, vol. 19, pp. 35–85, 2013.
- [2] I. Gutman, "The energy of a graph," Ber. Math. Statist. Sekt. Forschungsz. Graz, vol. 103, pp. 1–22, 1978.
- [3] D. Suna, C. Xua, and Y. Zhanga, "A novel method of 2d graphical representation for proteins and its application," RNA, vol. 18, p. 20, 2016.
- [4] S. A. Angadi and S. M. Hatture, "Face recognition through symbolic modeling of face graphs and texture," *International Journal of Pattern Recognition and Artificial Intelligence*, vol. 33, no. 12, p. 1956008, 2019. https://doi.org/10.1142/S0218001419560081.
- [5] B. Xiao, S. Yi-Zhe, and P. Hall, "Learning invariant structure for object identification by using graph methods," *Computer Vision and Image Understanding*, vol. 115, no. 7, pp. 1023–1031, 2011. https://doi.org/10.1016/j.cviu.2010.12.016.
- [6] J. H. van Lint and J. J. Seidel, "Equilateral point sets in elliptic geometry," in *Geometry and Combinatorics*, pp. 3–16, Elsevier, 1991. https://doi.org/10.1016/B978-0-12-189420-7. 50008-6.
- [7] H. Ramane, R. Jummannaver, and I. Gutman, "Seidel laplacian energy of graphs," Int. J. Appl. Graph Theory, vol. 1, no. 2, pp. 74-82, 2017. https://ijagt.heptotechnologies.org/ article-issues.php?id=20.
- [8] H. S. Ramane, I. Gutman, J. B. Patil, and R. B. Jummannaver, "Seidel signless laplacian energy of graphs," *Mathematics Interdisciplinary Research*, vol. 2, no. 2, pp. 181–191, 2017. https://doi.org/10.22052/mir.2017.101641.1081.
- H. M. Salih and A. A. Jund, "Prime ideal graphs of commutative rings," *Indonesian Journal of Combinatorics*, vol. 6, no. 1, pp. 42-49, 2022. https://dx.doi.org/10.19184/ijc.2022.
 6.1.2.
- [10] A. G. Syarifudin, I. Muchtadi-Alamsyah, and E. Suwastika, "Topological indices and properties of the prime ideal graph of a commutative ring and its line graph," *Contemporary Mathematics*, pp. 2211–2223, 2024. https://doi.org/10.37256/cm.5220243574.
- [11] N. H. Sarmin, A. F. A. Fadzil, and A. Erfanian, "Seidel energy for cayley graphs associated to dihedral group," in *Journal of Physics: Conference Series*, vol. 1988, p. 012066, IOP Publishing, 2021. https://doi.org/10.1088/1742-6596/1988/1/012066.
- [12] M. U. Romdhini, A. Nawawi, and B. N. Syechah, "Seidel laplacian and seidel signless laplacian energies of commuting graph for dihedral groups," *Malaysian Journal of Fundamental and Applied Sciences*, vol. 20, no. 3, pp. 701–713, 2024. https://doi.org/10.11113/mjfas.v20n3. 3465.
- [13] M. U. Romdhini, A. Nawawi, F. Al-Sharqi, and A. Al-Quran, "Seidel energy of noncommuting graph for the group u6n," TWMS Journal of Applied and Engineering Mathematics, 2025. https://belgelik.isikun.edu.tr/xmlui/handle/iubelgelik/6190.
- [14] R. Horn and C. Johnson, "Matrix analysis, cambridge univ," Press. MR0832183, 1985.
- [15] H. S. Ramane and S. S. Shinde, "Degree exponent polynomial of graphs obtained by some graph operations," *Electronic Notes in Discrete Mathematics*, vol. 63, pp. 161–168, 2017. https://doi.org/10.1016/j.endm.2017.11.010.