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Abstract. The monophonic polynomial of a graph G, denoted by M(G, x), is

the polynomial M(G, x) =
∑|G|

k=m(G)
M(G, k)xk, where |G| is the order of G and

M(G, k) is the number of monophonic sets in G with cardinality k. In this paper,

we delve into some characterizations of monophonic sets in the join of two graphs

and use it to determine its corresponding monophonic polynomial. Moreover, we

also present the monophonic polynomials of the complete graph Kn (n ≥ 1), the

path Pn (n ≥ 3), the cycle Cn (n ≥ 4), the fan Fn (n ≥ 3), the wheel Wn (n ≥ 4),

the complete bipartite Km,n (m,n ≥ 1), Pm +Pn (m,n ≥ 3), Cm +Cn (m,n ≥ 4),

Pm + Cn (m ≥ 3 and n ≥ 4), Pm +Kn (m ≥ 3 and n ≥ 2), and Cm +Kn (m ≥ 4

and n ≥ 2). In general, we obtain the monophonic polynomial of the join of two

graphs.

Key words and Phrases: graph, monophonic path, monophonic set, monophonic

number, monophonic polynomial.

1. INTRODUCTION

The study of polynomials in graph theory has been fundamental in under-
standing the properties of graphs. Since the introduction of the chromatic polyno-
mial by George Birkhoff in [1], various polynomial functions have been developed to
quantify different characteristics of graphs. In [2], Gutman and Harary defined the
independence polynomial. Hoffman discussed various properties of graphs related
to eigenvalues and colorings, including the concept of domination polynomials in [3].
Henning in [4], discussed the concept of total domination in graphs and introduced
the total domination polynomial as a tool to analyze this aspect of graph theory.
In [5], Hedetniemi and Slater introduced the monophonic polynomials of graphs,
which is a relatively recent addition to the compendium of graph polynomials.
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A graph G is a pair (V (G), E(G)), where V (G) is a finite set of elements
called vertices and E(G) is a set of unordered pairs in V (G) called edges. The set
V (G) is the vertex set of G and E(G) is the edge set of G. Let G be a graph and
S ⊆ V (G). The graph induced by S, denoted by ⟨S⟩G, is the graph with vertex set
S and edge set {uv : uv ∈ E(G) and u, v ∈ S}. A path P = [a1, a2, ..., an] in G is
said to contain a chord if there exist i and j, with 1 ≤ i ≤ n− 2 and i+2 ≤ j, such
that aiaj ∈ E(G). A monophonic path is a path that contains no chord. A subset S
of V (G) is a monophonic set in G if for every x ∈ V (G)\S, there exist u, v ∈ S such
that x is in a monophonic path with endpoints u and v. The minimum cardinality
of a monophonic set in G is the monophonic number of G and is denoted by m(G).

The monophonic polynomial of G is defined by M(G, x) =
∑|G|

k=m(G) M(G, k)xk,

where |G| is the order of G and M(G, k) is the number of monophonic sets in G
with cardinality k.

2. MONOPHONIC POLYNOMIALS OF SOME GRAPHS

In this section, we determine the monophonic polynomials of the complete
graph Kn (n ≥ 1), the path Pn (n ≥ 3), the cycle Cn (n ≥ 4), and the complete
bipartite Km,n (m,n ≥ 1).

Theorem 2.1. Let n ≥ 1. Then, the monophonic polynomial of Kn is

M(Kn, x) = xn.

Proof. Suppose S is a monphonic subset in Kn and S ̸= V (Kn). Let a ∈ V (Kn)\S.
Since S is monophonic in Kn, there exist u, v ∈ S such that a is in a monophonic
path with endpoints u and v. Now, ⟨{a, u, v}⟩ is complete, which contradicts the
definition of a monophonic path. Hence, S = V (Kn). Accordingly, M(Kn, x) =
xn. □

Theorem 2.2. Let n ≥ 3. Then, the monophonic polynomial of Pn is

M(Pn, x) = x2(x+ 1)n−2.

Proof. Let V (Pn) = {ai : 1 ≤ i ≤ n} and E(Pn) = {aiai+1 : 1 ≤ i ≤ n − 1}.
Let S be a monophonic set in Pn. Note that S is monphonic in Pn if and only if
a1, an ∈ S. Thus, we have the following:

(i) M(Pn, 1) = 0 ;
(ii) M(Pn, 2) = 1 ; and
(iii) M(Pn, k) =

(
n−2
k−2

)
, if 3 ≤ k ≤ n.

Consequently,

M(Pn, x) = x2 +

n∑
k=3

(
n− 2

k − 2

)
xk

= x2 +

(
n− 2

1

)
x3 +

(
n− 2

2

)
x3 + . . .+

(
n− 2

n− 2

)
xk
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= x2

(
n−2∑
k=0

(
n− 2

k

)
xk

)
= x2(x+ 1)n−2.

□

Theorem 2.3. Let n ≥ 4. Then, the monophonic polynomial of Cn is

M(Cn, x) = (x+ 1)n − (nx2 + nx+ 1).

Proof. Let V (Cn) = {ai : 1 ≤ i ≤ n} and E(Cn) = {aiai+1 : 1 ≤ i ≤ n −
1} ∪ {a1an}. Clearly, M(Cn, 1) = 0, since we need at least two elements for a
monophonic set. Note that the number of subsets of V (Cn) with cardinality two
is
(
n
2

)
. Moreover, adjacent vertices cannot form a monophonic set while any two

non-adjacent vertices forms a monophonic set. Thus, M(Cn, 2) =
(
n
2

)
−n. Suppose

3 ≤ k ≤ n. Note that any set of vertices with at least three vertices will have a pair
of non-adjacent vertices, and so it should be monophonic. Thus, M(Cn, k) =

(
n
k

)
,

if 3 ≤ k ≤ n. Hence,

M(Cn, x) =

[(
n

2

)
− n

]
x2 +

n∑
k=3

(
n

k

)
xk

=

(
n

2

)
x2 +

n∑
k=3

(
n

k

)
xk − nx2

=

n∑
k=0

(
n

k

)
xk − nx2 − nx− 1

= (x+ 1)n − (nx2 + nx+ 1).

□

In the succeeding theorems, we obtain the monophonic polynomial of Km,n,
when m,n ≥ 1.

Theorem 2.4. Let n ≥ 3. Then, the monophonic polynomial of K1,n is

M(K1,n, x) = xn(x+ 1).

Proof. Let V (K1,n) = {ai : 0 ≤ i ≤ n} and E(K1,n) = {a0ai : 1 ≤ i ≤ n}.
Clearly, M(K1,n, 1) = 0. Note that M(K1,n, n + 1) = 1. Let S be a monophonic
set in K1,n. If ai /∈ S for some i = 1, 2, . . . , n, then we get a contradiction since
it is impossible to have a monophonic path containing ai with endpoints in S . In
effect, {ai : 1 ≤ i ≤ n} ⊆ S. Consequently, M(K1,n, n) = 1 and M(K1,n, j) = 0, if
1 ≤ j ≤ n− 1. Hence, M(K1,n, x) = xn + xn+1 = xn(x+ 1). □

Theorem 2.5. Let 2 ≤ m ≤ n. Then, the monophonic polynomial of Km,n is

M(Km,n, x) = (x+ 1)m+n + (mx+ 1) [xn − (x+ 1)n]
+ (nx+ 1) [xm − (x+ 1)m] + (mx+ 1)(nx+ 1)
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Proof. Let V (Km,n) = A ∪ B, where A = {ai : 1 ≤ i ≤ m}, B = {bi : 1 ≤ i ≤ n},
and E(Km,n) = {aibj : 1 ≤ i ≤ m and 1 ≤ j ≤ n}. Let S be a monophonic set in
Km,n. Consider the following cases:

Case 1. When m = 2.
In this case, we have the following:

(i) If |A ∩ S| ≤ 1, then |B ∩ S| = n.
(ii) If |A ∩ S| = 2, then 0 ≤ |B ∩ S| ≤ n.

Sub-case (i) gives the terms xn + 2xn+1 while Sub-case (ii) provides the terms(
n
0

)
x2 +

(
n
1

)
x3 + . . .+

(
n
n

)
xn+2. Thus,

M(K2,n, x) =

(
n

0

)
x2 +

(
n

1

)
x3 + . . .+

(
n

n

)
xn+2 + xn + 2xn+1

= x2

[(
n

0

)
+

(
n

1

)
x+ . . .+

(
n

n

)
xn

]
+ xn(2x+ 1)

= x2(x+ 1)n + xn(2x+ 1).

Now,

(x+ 1)m+n + (mx+ 1) [xn − (x+ 1)n] + (nx+ 1) [xm − (x+ 1)m] + (mx+ 1)(nx+ 1)

= (x+ 1)2+n + (2x+ 1) [xn − (x+ 1)n] + (nx+ 1)
[
x2 − (x+ 1)2

]
+ (2x+ 1)(nx+ 1)

= (x+ 1)2+n − (2x+ 1)(x+ 1)n + (2x+ 1)xn − (nx+ 1)(2x+ 1) + (2x+ 1)(nx+ 1)

= (x+ 1)n
[
(x+ 1)2 − (2x+ 1)

]
+ (2x+ 1)xn

= (x+ 1)nx2 + (2x+ 1)xn

= x2(x+ 1)n + xn(2x+ 1).

Hence, the theorem holds when m = 2.

Case 2. When m = 3.
In this instance, we observe the following:

(i) If |A ∩ S| ≤ 1, then |B ∩ S| = n.
(ii) If |A ∩ S| = 2, then |B ∩ S| ≥ 2.
(iii) If |A ∩ S| = 3, then 0 ≤ |B ∩ S| ≤ n.

Sub-case (i) contributes the terms xn + 3xn+1. Sub-case (ii) gives us the terms(
3

2

)(
n

2

)
x4 +

(
3

2

)(
n

3

)
x5 + . . .+

(
3

2

)(
n

n

)
xn+2.

Sub-case (iii) provides the terms(
n

0

)
x3 +

(
n

1

)
x4 + . . .+

(
n

n

)
xn+3.
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Thus,

M(K3,n, x) = x3

[
n∑

k=0

(
n

k

)
xk

]
+ 3x2

[(
n

2

)
x2 +

(
n

3

)
x3 + . . .+

(
n

n

)
xn

]
+ xn + 3xn+1

= x3(x+ 1)n + 3x2(x+ 1)n − 3x2(nx+ 1) + xn(3x+ 1)

= (x+ 1)n(x3 + 3x2)− 3x2(nx+ 1) + xn(3x+ 1).

Now,

(x+ 1)m+n + (mx+ 1) [xn − (x+ 1)n] + (nx+ 1) [xm − (x+ 1)m]

+ (mx+ 1)(nx+ 1)

= (x+ 1)3+n + (3x+ 1) [xn − (x+ 1)n] + (nx+ 1)
[
x3 − (x+ 1)3

]
+ (3x+ 1)(nx+ 1)

= (x+ 1)3+n − (3x+ 1)(x+ 1)n + (3x+ 1)xn − (nx+ 1)(3x2 + 3x+ 1)

+ (3x+ 1)(nx+ 1)

= (x+ 1)n
[
(x+ 1)3 − (3x+ 1)

]
+ (3x+ 1)xn − 3x2(nx+ 1)

= (x+ 1)n(x3 + 3x2) + xn(3x+ 1)− 3x2(nx+ 1).

Hence, the theorem holds when m = 3.

Case 3. When m ≥ 4.
Under this condition, we have the following:

(i) If |A ∩ S| ≤ 1, then |B ∩ S| = n.
(ii) If 2 ≤ |A ∩ S| ≤ m− 1, then |B ∩ S| ≥ 2.
(iii) If |A ∩ S| = m, then 0 ≤ |B ∩ S| ≤ n.

Sub-case (i) contributes the terms xn+mxn+1. Sub-case (ii) generates the following
terms:(

m

2

)(
n

2

)
x4 +

(
m

2

)(
n

3

)
x5 + . . .+

(
m

2

)(
n

n

)
xn+2

+

(
m

3

)(
n

2

)
x5 +

(
m

3

)(
n

3

)
x6 + . . .+

(
m

3

)(
n

n

)
xn+3

...

+

(
m

m− 1

)(
n

2

)
xm+1 +

(
m

m− 1

)(
n

3

)
xm+2 + . . .+

(
m

m− 1

)(
n

n

)
xm+n−1.

Sub-case (iii) provides the terms
(
n
0

)
xm +

(
n
1

)
xm+1 + . . .+

(
n
n

)
xm+n. Thus,

M(Km,n, x) =

m∑
i=0

(
n

i

)
xm+i +

n∑
i=2

(
m

2

)(
n

i

)
x2+i +

n∑
i=2

(
m

3

)(
n

i

)
x3+i + . . .

+

n∑
i=2

(
m

m− 1

)(
n

i

)
xm+i−1 + xn +mxn+1
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= xm
m∑
i=0

(
n

i

)
xi +

(
m

2

)
x2

[
n∑

i=2

(
n

i

)
xi

]
+

(
m

3

)
x3

[
n∑

i=2

(
n

i

)
xi

]
+ . . .

+

(
m

m− 1

)
xm−1

[
n∑

i=2

(
n

i

)
xi

]
+ xn(mx+ 1)

= xm
m∑
i=0

(
n

i

)
xi +

(
m

2

)
x2

[
n∑

i=0

(
n

i

)
xi

]
+

(
m

3

)
x3

[
n∑

i=0

(
n

i

)
xi

]
+ . . .

+

(
m

m− 1

)
xm−1

[
n∑

i=0

(
n

i

)
xi

]
− (nx+ 1)

[(
m

2

)
x2

]
− (nx+ 1)

[(
m

3

)
x3

]
− . . .− (nx+ 1)

[(
m

m− 1

)
xm−1

]
+ xn(mx+ 1)

= xm(x+ 1)n +

(
m

2

)
x2(x+ 1)n +

(
m

3

)
x3(x+ 1)n + . . .

+

(
m

m− 1

)
xm−1(x+ 1)n − (nx+ 1)

[
m−1∑
i=2

(
m

i

)
xi

]
+ xn(mx+ 1)

= (x+ 1)n

[
m∑
i=2

(
m

i

)
xi

]
− (nx+ 1)

[
m−1∑
i=2

(
m

i

)
xi

]
+ xn(mx+ 1)

= (x+ 1)n

[
m∑
i=0

(
m

i

)
xi

]
− (nx+ 1)

[
m∑
i=0

(
m

i

)
xi

]
− (mx+ 1)(x+ 1)n

+ (nx+ 1)(xm +mx+ 1) + xn(mx+ 1)

= (x+ 1)n(x+ 1)m − (nx+ 1)(x+ 1)m − (mx+ 1)(x+ 1)n

+ (nx+ 1)(xm +mx+ 1) + xn(mx+ 1)

= (x+ 1)m+n − (nx+ 1)(x+ 1)m − (mx+ 1)(x+ 1)n

+ xm(nx+ 1) + (mx+ 1)(nx+ 1) + xn(mx+ 1)

= (x+ 1)m+n + (mx+ 1) [xn − (x+ 1)n] + (nx+ 1) [xm − (x+ 1)m]

+ (mx+ 1)(nx+ 1).

□

3. MONOPHONIC POLYNOMIAL OF THE JOIN OF GRAPHS

In [6], E.M. Paluga and S. R. Canoy, Jr. provided characterizations of mono-
phonic sets in the join of two graphs, which are stated below without proofs. In this
section, we use the characterization for the case G+Kn, to obtain its monophonic
polynomial. For the join of non-complete graphs, we use the characterization given
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in [6] to obtain another characterization, with mutually exclusive cases, and cor-
respondingly obtain the monophonic polynomial of the join of two non-complete
graphs.

Theorem 3.1. [6] Let G be a non-complete graph and n ≥ 1. Then S ⊆ V (G+Kn)
is monophonic in G+Kn if and only if V (G) ∩ S is monophonic in G.

Theorem 3.2. [6] Let G and H be non-complete graphs. Then S ⊆ V (G+H) is
monophonic in G+H if and only if one of the following holds:

(i) V (G) ∩ S is monophonic in G;
(ii) V (H) ∩ S is monophonic in H; and
(iii) There exist x, y ∈ V (G)∩S and u, v ∈ V (H)∩S such that xy ̸∈ E(G) and

uv ̸∈ E(H).

The next theorem provides the monophonic polynomial of the join G +Kn,
where n ≥ 1.

Theorem 3.3. Let G be a non-complete graph and n ≥ 1. Then, the monophonic
polynomial of G+Kn is

M(G+Kn, x) = M(G, x)(x+ 1)n.

Proof. Let G be a non-complete graph and n ≥ 1. By Theorem 3.1, we have

M(G+Kn, x) =

n∑
r=0

M(G,m(G))

(
n

r

)
xm(G)+r +

n∑
r=0

M(G,m(G) + 1)

(
n

r

)
xm(G)+r+1

+ . . .+

n∑
r=0

M(G, |G| − 1)

(
n

r

)
x|G|+r−1 +

n∑
r=0

M(G, |G|)
(
n

r

)
x|G|+r

= M(G,m(G))xm(G)
n∑

r=0

(
n

r

)
xr +M(G,m(G) + 1)xm(G)+1

n∑
r=0

(
n

r

)
xr

+ . . .+M(G, |G| − 1)x|G|−1
n∑

r=0

(
n

r

)
xr +M(G, |G|)x|G|

n∑
r=0

(
n

r

)
xr

=

[(
n

r

)
xr

] |G|∑
r=m(G)

M(G, r)xr


= (x+ 1)nM(G, x).

□

The following corollaries show the direct consequences of Theorem 3.3.

Corollary 3.4. Let n ≥ 3. Then

M(Fn, x) = x2(x+ 1)n−1.
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Proof. Let n ≥ 3. Note that Fn = Pn +K1. Then by Theorem 3.3 and Theorem
2.2,

M(Fn, x) = M(Pn, x)(x+ 1) =
[
x2(x+ 1)n−2

]
(x+ 1) = x2(x+ 1)n−1.

□

Corollary 3.5. Let n ≥ 4. Then

M(Wn, x) = (x+ 1)n+1 − (x+ 1)(nx2 + nx+ 1).

Proof. Let n ≥ 4. Note that Wn = Cn +K1. Then by Theorem 3.3 and Theorem
2.3, M(Cn, x) = (x+ 1)n − (nx2 + nx+ 1).

M(Wn, x) = M(Wn, x)(x+ 1)

=
[
(x+ 1)n − (nx2 + nx+ 1)

]
(x+ 1)

= (x+ 1)n+1 − (x+ 1)(nx2 + nx+ 1).

□

Let us consider the concepts of clique polynomials and incomplete polynomi-
als in graphs. We will use these ideas to obtain monophonic polynomial of G+H,
where G and H are non-complete graphs.

Let G be a graph and r ≥ 1. A subset S of V (G) is called a clique if ⟨S⟩G
is complete. The r-clique index of G , denoted by κ(G, r), is the number of cliques
in G with cardinality r. That is, κ(G, r) = |{S : S ⊆ V (G) and ⟨S⟩G ∼=
Kr}|. The clique polynomial of G, denoted by κ(G, x), is defined by κ(G, x) =∑ω(G)

r=1 κ(G, r)xr, where ω(G) is the maximum clique. In [7], Stevanovic provided
a comprehensive characterization of clique polynomials specifically for threshold
graphs, demonstrating that these polynomials uniquely determine threshold graphs
within their class.

The following examples present the clique polynomial of Pn, Cn, and Kn.

Example 3.6. Let n ≥ 1. Then

κ(Kn, x) =

(
n

1

)
x+

(
n

2

)
x2 + . . .

(
n

n

)
xn

= (x+ 1)n − 1.

Example 3.7. Let n ≥ 3. Then κ(Pn, x) = (n− 1)x2 + nx.

Example 3.8. Let n ≥ 4. Then κ(Cn, x) = nx2 + nx.

Example 3.9. Let n ≥ 1. Then κ(Kn, x) = nx.

For a graph G and r ≥ 1, we define the concept of the r-incomplete index of
G, denoted by π(G, r), which is the number of subsets in G with cardinality r that
generates a non-complete graph. That is,

π(G, r) = |{S : S ⊆ V (G), |S| = r, and ⟨S⟩G ̸∼= Kr}|.



9

Correspondingly, we define the incomplete polynomial of G, denoted by π(G, x), is

defined by π(G, x) =
∑|G|

r=2 π(G, r)xr.

Note that π(G, r) =
(|G|

r

)
− κ(G, r), where 2 ≤ r ≤ |G|.

The next examples provide the incomplete polynomial of Kn, Pn, Cn, and
Kn.

Example 3.10. Let n ≥ 1. Then π(Kn, x) = 0.

Example 3.11. Let n ≥ 3. Then

π(Pn, x) =

[(
n

2

)
− (n− 1)

]
x2 +

(
n

3

)
x3 + . . .+

(
n

n

)
xn

=

(
n

0

)
+

(
n

1

)
x+

(
n

2

)
x2 +

(
n

3

)
x3 + . . .+

(
n

n

)
xn − (n− 1)x2 −

(
n

0

)
−
(
n

1

)
x

= (x+ 1)n −
[
(n− 1)x2 + nx+ 1

]
.

Example 3.12. Let n ≥ 4. Then

π(Cn, x) =

[(
n

2

)
− n

]
x2 +

(
n

3

)
x3 + . . .+

(
n

n

)
xn

=

(
n

0

)
+

(
n

1

)
x+

(
n

2

)
x2 +

(
n

3

)
x3 + . . .+

(
n

n

)
xn − nx2 −

(
n

0

)
−
(
n

1

)
x

= (x+ 1)n − (nx2 + nx+ 1).

Example 3.13. Let n ≥ 4. Then

π(Kn, x) =

(
n

2

)
x2 +

(
n

3

)
x3 + . . .

(
n

n

)
xn

=

(
n

0

)
+

(
n

1

)
x+

(
n

2

)
x2 +

(
n

3

)
x3 + . . .+

(
n

n

)
xn −

(
n

0

)
−
(
n

1

)
x

= (x+ 1)n − (nx+ 1).

The next theorem provides a characterization of monophonic sets in the join
of two non-complete graphs, which we use to generate the monophonic polynomial
of the join of two non-complete graphs.

Theorem 3.14. Let G and H be non-complete graphs. Then S ⊆ V (G + H) is
monophonic in G+H if and only if one of the following holds:

(i) ⟨V (G) ∩ S⟩G and ⟨V (H) ∩ S⟩H are non-empty and non-complete graphs;
(ii) V (G) ∩ S = ∅ and V (H) ∩ S is monophonic in H;
(iii) V (H) ∩ S = ∅ and V (G) ∩ S is monophonic in G;
(iv) V (G) ∩ S is a clique in G and V (H) ∩ S is monophonic in H; and
(v) V (H) ∩ S is a clique in H and V (G) ∩ S is monophonic in G.

Proof. Suppose S is monophonic in G + H. Then by 3.2 (iii), ⟨V (G) ∩ S⟩G and
⟨V (H) ∩ S⟩H are non-empty and non-complete graphs. Thus, (i) of Theorem 3.14
holds. By Theorem 3.2 (i), (iii) and (v) of Theorem 3.14 hold. By Theorem 3.2
(ii), (ii) and (iv) of Theorem 3.14 hold. □
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Suppose conditions (i)-(iii) of Theorem 3.14 hold. Then by Theorem 3.2, S
is monophonic in G +H. Note that the conditions in Theorem 3.14 are mutually
exclusive.

Theorem 3.15. Let G and H be non-complete graphs. Then

M(G+H,x) = M(G, x) [κ(H,x) + 1] +M(H,x) [κ(G, x) + 1] + π(G, x)π(H,x).

Proof. By Theorem 3.14(i), we obtain the following terms:

|H|∑
r=2

π(G, 2)π(H, r)xr+2 +

|H|∑
r=2

π(G, 3)π(H, r)xr+3 + . . .

+

|H|∑
r=2

π(G, |G|)π(H, r)xr+|G|

= π(G, 2)x2

|H|∑
r=2

π(H, r)xr + π(G, 3)x3

|H|∑
r=2

π(H, r)xr + . . .

+ π(G, |G|)x|G|
|H|∑
r=2

π(H, r)xr

=

 |G|∑
r=2

π(G, r)xr

 |H|∑
r=2)

M(H, r)xr


= π(G, x)π(H,x)

By Theorem 3.14(ii), we have the following terms:

M(H,m(H))xm(H) +M(H,m(H))xm(H)+1 + . . .+M(H, |H|)x|H| = M(H,x).

By Theorem 3.14(iii), we have the following terms:

M(G,m(G))xm(G) +M(G,m(G) + 1)xm(G)+1 + . . .+M(G, |G|)x|G| = M(G, x).

By Theorem 3.14(iv), we obtain the following terms:

|H|∑
r=m(H)

κ(G, 1)M(H, r)xr+1 +

|H|∑
r=m(H)

κ(G, 2)M(H, r)xr+2 + . . .

+

|H|∑
r=m(H)

κ(G,ω(G))M(H, r)xr+ω(G)

= κ(G, 1)x

 |H|∑
r=m(H)

M(H, r)xr

+ κ(G, 2)x2

 |H|∑
r=m(H)

M(H, r)xr

+ . . .

+ κ(G,ω(G))xω(G)

 |H|∑
r=m(H)

M(H, r)xr


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=

ω(G)∑
r=1

κ(G, r)xr

 |H|∑
r=m(H)

M(H, r)xr


= κ(G, x)M(H,x)

By Theorem 3.14(v), we generate the following terms:

|G|∑
r=m(G)

κ(H, 1)M(G, r)xr+1 +

|G|∑
r=m(G)

κ(H, 2)M(G, r)xr+2 + . . .

+

|G|∑
r=m(G)

κ(H,ω(H))M(G, r)xr+ω(H)

= κ(H, 1)x

|G|∑
r=m(G)

M(G, r)xr + κ(H, 2)x2

|G|∑
r=m(G)

M(G, r)xr + . . .

+ κ(H,ω(H))xω(H)

|G|∑
r=m(G)

M(G, r)xr

=

ω(H)∑
r=1

κ(H, r)xr

 |G|∑
r=m(G)

M(G, r)xr


= κ(H,x)M(G, x)

Now, we note that the conditions specified in Theorem 3.14 are mutually exclusive.
Consequently, the coefficient of xr, which represents the number of monophonic
sets with cardinality r, can be determined by adding the coefficients of xr derived
from each case outlined in Theorem 3.14. Hence,

M(G+H,x) = M(G, x) +M(H,x) + κ(G, x)M(H,x) + κ(H,x)M(G, x)

+ π(G, x)π(H,x)

= M(G, x) [κ(H,x) + 1] +M(H,x) [κ(G, x) + 1] + π(G, x)π(H,x)

□

In the subsequent results, we derive the monophonic polynomials of Pm+Pn

(m,n ≥ 3), Cm + Cn (m,n ≥ 4), Pm + Cn (m ≥ 3 and n ≥ 4), Pm +Kn (m ≥ 3
and n ≥ 2), and Cm +Kn (m ≥ 4 and n ≥ 2).

Corollary 3.16. Let m,n ≥ 3. Then, the monophonic polynomial of Pm + Pn is

M(Pm + Pn, x) = (x+ 1)m+n − (2x+ 1)(x+ 1)m−2
[
(n− 1)x2 + nx+ 1

]
− (2x+ 1)(x+ 1)n−2

[
(m− 1)x2 +mx+ 1

]
+
[
(m− 1)x2 +mx+ 1

] [
(n− 1)x2 + nx+ 1

]
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Proof. By Theorem 2.2, M(Pn, x) = x2(x + 1)n−2. By Example 3.7, κ(Pn, x) =
(n−1)x2+nx. By Example 3.11, π(Pn, x) = (x+1)n−

[
(n− 1)x2 + nx+ 1

]
. Thus

by Theorem 3.15, we have the following:

M(Pm + Pn, x) = M(Pm, x) [κ(Pn, x) + 1] +M(Pn, x) [κ(Pm, x) + 1] + π(Pm, x)π(Pn, x)

= x2(x+ 1)m−2
[
(n− 1)x2 + nx+ 1

]
+ x2(x+ 1)n−2

[
(m− 1)x2 +mx+ 1

]
+
[
(x+ 1)m − [(m− 1)x2 +mx+ 1]

] [
(x+ 1)n − [(n− 1)x2 + nx+ 1]

]
= x2(x+ 1)m−2

[
(n− 1)x2 + nx+ 1

]
+ x2(x+ 1)n−2

[
(m− 1)x2 +mx+ 1

]
+ (x+ 1)m+n − (x+ 1)m

[
(n− 1)x2 + nx+ 1

]
− (x+ 1)n

[
(m− 1)x2 +mx+ 1

]
+
[
(m− 1)x2 +mx+ 1

] [
(n− 1)x2 + nx+ 1

]
= (x+ 1)m+n + (x+ 1)m−2

[
(n− 1)x2 + nx+ 1

] [
x2 − (x+ 1)2

]
+ (x+ 1)n−2

[
(m− 1)x2 +mx+ 1

] [
x2 − (x+ 1)2

]
+
[
(m− 1)x2 +mx+ 1

] [
(n− 1)x2 + nx+ 1

]
= (x+ 1)m+n − (2x+ 1)(x+ 1)m−2

[
(n− 1)x2 + nx+ 1

]
− (2x+ 1)(x+ 1)n−2

[
(m− 1)x2 +mx+ 1

]
+
[
(m− 1)x2 +mx+ 1

] [
(n− 1)x2 + nx+ 1

]
□

Corollary 3.17. Let m,n ≥ 4. Then, the monophonic polynomial of Cm + Cn is

M(Cm + Cn, x) = (x+ 1)m+n − (mx2 +mx+ 1)(nx2 + nx+ 1).

Proof. By Theorem 2.3, M(Cn, x) = (x + 1)n − (nx2 + nx + 1). By Example 3.8,
κ(Cn, x) = nx2+nx. By Example 3.12, π(Cn, x) = (x+1)n− (nx2+nx+1). Thus
by Theorem 3.15, we have the following:

M(Cm + Cn, x) = M(Cm, x) [κ(Cn, x) + 1] +M(Cn, x) [κ(Cm, x) + 1] + π(Cm, x)π(Cn, x)

=
[
(x+ 1)m − (mx2 +mx+ 1)

] [
nx2 + nx+ 1

]
+
[
(x+ 1)n − (nx2 + nx+ 1)

] [
mx2 +mx+ 1

]
+
[
(x+ 1)m − (mx2 +mx+ 1)

] [
(x+ 1)n − (nx2 + nx+ 1)

]
= (x+ 1)m(nx2 + nx+ 1)− (mx2 +mx+ 1)(nx2 + nx+ 1)

+ (x+ 1)n(mx2 +mx+ 1)− (mx2 +mx+ 1)(nx2 + nx+ 1)

+ (x+ 1)m+n − (x+ 1)m(nx2 + nx+ 1)− (x+ 1)n(mx2 +mx+ 1)

+ (mx2 +mx+ 1)(nx2 + nx+ 1)

= (x+ 1)m+n − (mx2 +mx+ 1)(nx2 + nx+ 1).

□
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Corollary 3.18. Let m ≥ 3 and n ≥ 4. Then, the monophonic polynomial of
Pm + Cn is

M(Pm + Cn, x) = (x+ 1)m+n − (2x+ 1)(nx2 + nx+ 1)(x+ 1)m−2.

Proof. By Theorem 2.2, M(Pn, x) = x2(x + 1)n−2. By Theorem 2.3, M(Cn, x) =
(x+1)n−(nx2+nx+1). By Example 3.7, κ(Pn, x) = (n−1)x2+nx. By Example 3.8,
κ(Cn, x) = nx2+nx. By Example 3.11, π(Pn, x) = (x+1)n−

[
(n− 1)x2 + nx+ 1

]
.

By Example 3.12, π(Cn, x) = (x + 1)n − (nx2 + nx + 1). Thus by Theorem 3.15,
we have the following:

M(Pm + Cn, x) = M(Pm, x) [κ(Cn, x) + 1] +M(Cn, x) [κ(Pm, x) + 1] + π(Pm, x)π(Cn, x)

= x2(x+ 1)m−2(nx2 + nx+ 1)

+
[
(x+ 1)n − (nx2 + nx+ 1)

] [
(m− 1)x2 +mx+ 1

]
+
[
(x+ 1)m − [(m− 1)x2 +mx+ 1]

] [
(x+ 1)n − (nx2 + nx+ 1)

]
= x2(x+ 1)m−2(nx2 + nx+ 1) + (x+ 1)n

[
(m− 1)x2 +mx+ 1

]
− (nx2 + nx+ 1)

[
(m− 1)x2 +mx+ 1

]
+ (x+ 1)m+n

− (x+ 1)m(nx2 + nx+ 1)− (x+ 1)n
[
(m− 1)x2 +mx+ 1]

]
+ (nx2 + nx+ 1)

[
(m− 1)x2 +mx+ 1

]
= (x+ 1)m+n + (nx2 + nx+ 1)(x+ 1)m−2

[
x2 − (x+ 1)2

]
= (x+ 1)m+n − (2x+ 1)(nx2 + nx+ 1)(x+ 1)m−2.

□

Corollary 3.19. Let m ≥ 3 and n ≥ 2. Then, the monophonic polynomial of
Pm +Kn is

M(Pm +Kn, x) = (x+ 1)m+n − (2x+ 1)(nx+ 1)(x+ 1)m−2

+
[
(m− 1)x2 +mx+ 1

]
[(xn + nx+ 1)− (x+ 1)n] .

Proof. Note that M(Kn, x) = xn. By Theorem 2.2, M(Pn, x) = x2(x + 1)n−2.
By Example 3.7, κ(Pn, x) = (n − 1)x2 + nx. By Example 3.9, κ(Kn, x) = nx.
By Example 3.11, π(Pn, x) = (x + 1)n −

[
(n− 1)x2 + nx+ 1

]
. By Example 3.13,

π(Kn, x) = (x+ 1)n − (nx+ 1). Theorem 3.15, we have the following:

M(Pm +Kn, x) = M(Pm, x)
[
κ(Kn, x) + 1

]
+M(Kn, x) [κ(Pm, x) + 1] + π(Pm, x)π(Kn, x)

= x2(x+ 1)m−2(nx+ 1) + xn
[
(m− 1)x2 +mx+ 1

]
+
[
(x+ 1)m − [(m− 1)x2 +mx+ 1]

]
[(x+ 1)n − (nx+ 1)]

= x2(x+ 1)m−2(nx+ 1) + xn
[
(m− 1)x2 +mx+ 1

]
+ (x+ 1)m+n

− (nx+ 1)(x+ 1)m − [(m− 1)x2 +mx+ 1](x+ 1)n

+ (nx+ 1)[(m− 1)x2 +mx+ 1]

= (x+ 1)m+n + (nx+ 1)(x+ 1)m−2
[
x2 − (x+ 1)2

]
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+
[
(m− 1)x2 +mx+ 1

]
[xn + (nx+ 1)− (x+ 1)n]

= (x+ 1)m+n − (2x+ 1)(nx+ 1)(x+ 1)m−2

+
[
(m− 1)x2 +mx+ 1

]
[(xn + nx+ 1)− (x+ 1)n] .

□

Corollary 3.20. Let m ≥ 4 and n ≥ 2. Then, the monophonic polynomial of
Cm +Kn is

M(Cm +Kn, x) = (x+ 1)m+n + (mx2 +mx+ 1) [xn − (x+ 1)n] .

Proof. By Theorem 2.3, M(Cn, x) = (x + 1)n − (nx2 + nx + 1). By Example
3.8, κ(Cn, x) = nx2 + nx. By Example 3.9, κ(Kn, x) = nx. By Example 3.12,
π(Cn, x) = (x+1)n−(nx2+nx+1). By Example 3.13, π(Kn, x) = (x+1)n−(nx+1).
Thus, Theorem 3.15, we have the following:

M(Cm +Kn, x) = M(Cm, x)
[
κ(Kn, x) + 1

]
+M(Kn, x) [κ(Cm, x) + 1] + π(Cm, x)π(Kn, x)

=
[
(x+ 1)m − (mx2 +mx+ 1)

]
(nx+ 1) + xn(mx2 +mx+ 1)

+
[
(x+ 1)m − (mx2 +mx+ 1)

]
[(x+ 1)n − (nx+ 1)]

= (nx+ 1)(x+ 1)m − (nx+ 1)(mx2 +mx+ 1) + xn(mx2 +mx+ 1)

+ (x+ 1)m+n − (nx+ 1)(x+ 1)m − (mx2 +mx+ 1)(x+ 1)n

+ (nx+ 1)(mx2 +mx+ 1)

= (x+ 1)m+n + (mx2 +mx+ 1) [xn − (x+ 1)n] .

□

In the next result, we provide another proof of Theorem 2.5 using Theorem
3.15.

Another Proof of Theorem 2.5
Let 2 ≤ m ≤ n. Then

M(Km,n, x) = (x+ 1)m+n + (mx+ 1) [xn − (x+ 1)n]
+(nx+ 1) [xm − (x+ 1)m] + (mx+ 1)(nx+ 1).
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Proof. Let 2 ≤ m ≤ n. Note that Km,n
∼= Km +Kn. Thus, by Theorem 3.14, we

have the following:

M(Km,n, x) = M(Km +Kn)
= M(Km, x)[κ(Kn, x) + 1] +M(Kn, x)[κ(Km, x) + 1]

+π(Km, x)π(Kn, x)
= xm(nx+ 1) + xn(mx+ 1)

+[(x+ 1)m − (mx+ 1)][(x+ 1)n − (nx+ 1)]
= xm(nx+ 1) + xn(mx+ 1) + (x+ 1)m+n − (mx+ 1)(x+ 1)n

−(nx+ 1)(x+ 1)m] + (mx+ 1)(nx+ 1)
= (x+ 1)m+n + (mx+ 1) [xn − (x+ 1)n]
+(nx+ 1) [xm − (x+ 1)m] + (mx+ 1)(nx+ 1).

□
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