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Abstract. Let c be a proper coloring of a graph G = (V,E) with k col-

ors which induces a partition Π of V (G) into color classes L1, L2, . . . , Lk. For

each vertex v in G, the color code cΠ(v) is defined as the ordered k-tuple

(d(v, L1), d(v, L2), . . . , d(v, Lk)), where d(v, Li) represents the minimum distance

from v to all other vertices u in Li(1 ≤ i ≤ k). If every vertex possesses unique

color codes, then c is called a locating-k-coloring in G. If k is the minimum number

such that c is a locating-k-coloring in G, then the locating-chromatic number of G

is χL(G) = k. In this paper, the author determine the locating-chromatic number

of some Jellyfish Graphs.

Key words and Phrases: Locating-Coloring, Locating-Chromatic Number, Jellyfish
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1. INTRODUCTION

Consider a finite, simple, and connected graph G = (V,E). Let c be a proper
coloring of a graph G = (V,E) with k colors which induces a partition Π of V (G)
into color classes L1, L2, . . . , Lk. For each vertex v in G, the color code cΠ(v)
is defined as the ordered k-tuple (d(v, L1), d(v, L2), . . . , d(v, Lk)), where d(v, Li)
represents the minimum distance from v to all other vertices u in Li(1 ≤ i ≤ k). If
every vertex possesses unique color codes, then c is called a locating-k-coloring in
G. If k is the minimum number such that c is a locating-k-coloring in G, then the
locating-chromatic number of G is χL(G) = k.

Chartrand et al. [1] initially proposed the concept of locating-chromatic num-
ber of a graph in 2002. They determined the locating-chromatic numbers of familiar
graphs including paths Pn, cycles Cn, double stars Sa,b, and complete multipartite
graphs. They also established constraints of the locating-chromatic number based
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on the order and diameter of a graph. Additionally, Chartrand et al. [2] extended
their investigation to trees where they proved that for any k ∈ {3, 4, ..., n − 2, n},
there exists a tree T of order n with χL(T ) = k and showed that it is impossible
to have a tree T of order n with χL(T ) = n− 1.

It is noteworthy that there is no universally applicable algorithm to com-
pute the locating-chromatic number for graphs [3]. Consequently, research on the
locating-chromatic number is focused on specific classes of graphs or involves in
characterizing graphs with certain locating-chromatic numbers. Various studies
have explored the locating-chromatic numbers for graph obtained through the ope-
rations involving two graphs, such as the join of graphs [4], Cartesian product
[5], and corona product [6]. Furthermore, researchers have identified the locating-
chromatic number for several unique graph structures, such as Firecracker graphs
[7], Pizza graphs [8], Origami graphs [9], Lobster graphs [10], Caterpillar graphs
[11], Book graphs [12], Barbell graphs [11], Halin graphs [3], and Kneser graphs
[13].

In the case of characterization, Chartrand et al. [2] provided a characteri-
zation for all connected graphs G of order n ≥ 4 with χL(G) = 3. Baskoro and
Asmiati [14] characterized all trees having locating-chromatic number 3. Asmiati
and Baskoro [15] also characterized all graphs containing cycles with locating-
chromatic number 3. Arfin and Baskoro also characterized all unicyclic graphs
having locating-chromatic number n− 2 [16] and n− 3 [17].

In this paper, the author is interested in exploring the locating-chromatic
number of some Jellyfish graphs. The term ”jellyfish” denotes a graph structure
resembling the shape of a jellyfish. However, there are several articles that provide
different definitions of the Jellyfish graph. The author found that there are at least
three sources that use the term ”Jellyfish graph” in their research, each with their
own respective definitions.

(1) A Jellyfish graph defined by Lee and Lee [18], denoted as Jm,n, with the
following definition.
The Jellyfish graph Jm,n for m,n ≥ 1 is a graph with a set of vertex
V = {u, v, x, y} ∪ {xi|1 ≤ i ≤ m} ∪ {yj |1 ≤ j ≤ n} and a set of edge
E = {ux, uv, uy, vx, vy} ∪ {xxi|1 ≤ i ≤ m} ∪ {yyj |1 ≤ j ≤ n}. Figure 1
displays the structure of graph Jm,n.

Figure 1. Graph Jm,n

.
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(2) A Jellyfish graph defined by Azka et al. [19], denoted as Jn, with the
following definition.
Let Cn be a cycle graph of order n ≥ 3 with V (Cn) = {vi|1 ≤ i ≤ n}. Let
P and Q be two path graphs of order ⌊n

2 ⌋, with V (P ) = {pj |1 ≤ j ≤ ⌊n
2 ⌋}

and V (Q) = {qk|1 ≤ k ≤ ⌊n
2 ⌋}. The Jellyfish graph Jn is a graph obtained

by connecting P and Q onto Cn by adding edges v1p1 and vnq1. Figure 2
displays the structure of graph Jn.

Figure 2. Graph Jn

.

(3) A Jellyfish graph defined by Akbar and Sugeng [20], denoted as J(m,n),
with the following definition.
The Jellyfish graph J(m,n) is a graph with a set of vertex V = {vi|1 ≤ i ≤
n} ∪ {x, y} ∪ {xj , yj |1 ≤ j ≤ m} and a set of edge E = {xy, xvi, yvi|1 ≤
i ≤ n} ∪ {xxj , yyj |1 ≤ j ≤ m}. Figure 3 displays the structure of graph
J(m,n).

Figure 3. Graph J(m,n)

.
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2. BASIC PROPERTIES

This section encompasses essential attributes concerning the locating-chroma-
tic number of graphs. Consider a connected graph G(V,E) with an order of n, and v
is a vertex inG. The neighborhood of v is defined asN(v) = {x ∈ V (G)|xv ∈ E(G)},
and the degree of v is defined as deg(v) = |N(v)| [17]. A leaf is a vertex in G with
degree one [17, 1]. The number of leaves adjacent to v indicates the external degree
of v and is denoted as d+(v). The maximum value of d+(v) for each vertex v in
G indicates the maximum external degree of G and is denoted as ∆+(G) [17]. The
following theorems and corollary are inherent to this context.

Theorem 2.1. [1] If G is a connected graph of order n ≥ 3, then 3 ≤ χL(G) ≤ n.

Theorem 2.2. [1] Let c be a locating-coloring in a connected graph G. If u and
v are distinct vertices of G such that d(u,w) = d(v, w) for all w ∈ V (G)\{u, v},
then c(u) ̸= c(v). In particular, if u and v are nonadjacent vertices of G such that
N(u) = N(v), then c(u) ̸= c(v).

Corollary 2.3. [1] If G is a connected graph containing a vertex v with d+(v) = p,
then χL(G) ≥ p. Furthermore, if ∆+(G) = P , then χL(G) ≥ P + 1.

3. MAIN RESULTS

Theorem 3.1. The locating-chromatic number of Jm,n for m ≥ n ≥ 1 is

χL(Jm,n) =

{
4, m < 3,

m+ 1, m ≥ 3.

Proof. The proof will be divided into two cases, i.e. for m < 3 and for m ≥ 3.

Case 1. m < 3. Notably, u, v, and x form pairwise adjacent vertices, so
they must be assigned with distinct colors. Therefore, χL(Jm,n) ≥ 3. Now, assume
χL(Jm,n) = 3 and let c be a locating-3-coloring in Jm,n such that c(u) = 1, c(v) = 2,
and c(x) = 3. However, as u, v, and y also form pairwise adjacent vertices, y must
be assigned with color 3, which leads to contradiction since cΠ(x) = cΠ(y) =
(1, 1, 0). Therefore, it is deduced that χL(Jm,n) ≥ 4.

To establish an upper bound, given that m < 3, three possible graph exist,
i.e. J1,1, J2,1, and J2,2. Figure 4 illustrates these three graphs along with their
minimum locating-4-coloring. Consequently, it is concluded that χL(Jm,n) ≤ 4.
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Figure 4. Graph (a) J1,1, (b) J2,1, and (c) J2,2 with their mini-
mum locating-coloring

.

Case 2. m ≥ 3. Note that ∆+(Jm,n) = d+(x) = m ≥ 3. By Corollary 2.3,
it implies χL(Jm,n) ≥ m + 1. To establish an upper bound, define a coloring c′ :
V (Jm,n) → {1, 2, ...,m+1} such that c′(u) = 1, c′(v) = 2, c′(x) = 3, c′(y) = m+1,
c′(yj) = j for 1 ≤ j ≤ n, and

c′(xi) =

{
i, i = 1, 2,

i+ 1, 3 ≤ i ≤ m.

Figure 5. The coloring c′ in Jm,n

.

Let Π = {Lk|1 ≤ k ≤ m+ 1} be a partition of V (Jm,n) induced by c′, where
Lk containing vertices of color k. Let a and b be two distinct vertices such that
c′(a) = c′(b). It follows that a and b must belong to L1, L2, ..., Ln, or Lm+1, since
Ln+1, Ln+2, ..., Lm are either singleton sets (for m > n) or empty sets (for m = n).

• If a, b ∈ L1, then a, b ∈ {u, x1, y1}. Note that d(u, L2) = 1 and d(x1, L2) =
d(y1, L2) = 2, so c′Π(u) must be distinct with c′Π(x1) and c′Π(y1). Moreover,
since d(x1, Lm+1) = 2 and d(y1, Lm+1) = 1, it follows that c′Π(x1) ̸= c′Π(y1),
therefore c′Π(a) ̸= c′Π(b);
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• If a, b ∈ L2, then a, b ∈ {v, x2, y2}. Note that d(v, L1) = 1 and d(x2, L1) =
d(y2, L1) = 2, so c′Π(v) must be distinct with c′Π(x2) and c′Π(y2). Moreover,
since d(x2, Lm+1) = 2 and d(y2, Lm+1) = 1, it follows that c′Π(x2) ̸= c′Π(y2),
therefore c′Π(a) ̸= c′Π(b);

• If a, b ∈ L3, then a, b ∈ {x, y3}. Since d(x, L1) = 1 and d(y3, L1) = 2, it
follows that c′Π(a) ̸= c′Π(b);

• If a, b ∈ Lm+1, then a, b ∈ {y, xm}. Since d(y, L1) = 1 and d(xm, L1) = 2,
it follows that c′Π(a) ̸= c′Π(b);

• If a, b ∈ Lk(4 ≤ n ≤ n), then a, b ∈ {xk−1, yk}. Since d(xk−1, Lm+1) = 2
and d(yk, Lm+1) = 1, it follows that c′Π(a) ̸= c′Π(b).

Since all vertices of Jm,n have distinct color codes, c′ is a locating-coloring in
Jm,n. Therefore, χL(Jm,n) ≤ m+ 1. □

Theorem 3.2. The locating-chromatic number of Jn for n ≥ 3 is χL(Jn) = 3.

Proof. For all connected graphs, it is evident that the lower bound of its locating-
chromatic number is 3, therefore χL(Jn) ≥ 3. It will be demonstrated that
χL(Jn) ≤ 3 by considering two cases, i.e. for n odd and n even.

Case 1. n odd. Define a coloring c1 : V (Jn) → {1, 2, 3} such that

c1(vi) =


1, i = 1,

2, i ≥ 2, i is even,

3, i ≥ 3, i is odd.

and

c1(pj) =

{
1, j is even,

2, j is odd.
; c1(qk) =

{
1, k is odd,

3, k is even.

Let Π = {L1, L2, L3} be a partition of V (Jn) induced by c1, where Lk contain-
ing vertices of color k. Let a and b be two distinct vertices such that c1(a) = c1(b).

• If a, b ∈ L1, then a, b ∈ {v1} ∪ {pj |1 ≤ j ≤ ⌊n
2 ⌋, j is even} ∪ {qk|1 ≤ k ≤

⌊n
2 ⌋, k is odd}. It follows that c1Π(v1) = (0, 1, 1), c1Π(pj) = (0, 1, j + 1),

and c1Π(qk) = (0, k + 1, 1), therefore c1Π(a) ̸= c1Π(b);
• If a, b ∈ L2, then a, b ∈ {vi|2 ≤ i ≤ n, i is even}∪{pj |1 ≤ j ≤ ⌊n

2 ⌋, j is odd}.
Since d(vi, L3) = 1 and d(pj , L3) = j + 1, it follows that c1Π(a) ̸= c1Π(b);

• If a, b ∈ L3, then a, b ∈ {vi|2 ≤ i ≤ n, i is odd}∪{qk|1 ≤ k ≤ ⌊n
2 ⌋, k is even}.

Since d(vi, L2) = 1 and d(qk, L2) = k + 1, it follows that c1Π(a) ̸= c1Π(b).

Since all vertices in Jn have distinct color codes, c1 is a locating-coloring in
Jn. Therefore χL(Jn) ≤ 3.

Case 2. n even. Define a coloring c2 : V (Jn) → {1, 2, 3} such that

c2(vi) =

{
1, i is odd,

2, i is even,
; c1(pj) =

{
1, j is even,

3, j is odd.
; c1(qk) =

{
1, k is even,

3, k is odd.
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Let Π = {L1, L2, L3} be a partition of V (Jn) induced by c2, where Lk contain-
ing vertices of color k. Let a and b be two distinct vertices such that c2(a) = c2(b).

• If a, b ∈ L1, then a, b ∈ {vi|1 ≤ i ≤ n, i is odd}∪{pj |1 ≤ j ≤ ⌊n
2 ⌋, j is even}∪

{qk|1 ≤ k ≤ ⌊n
2 ⌋, k is even}. Since d(vi, L2) = 1, d(pj , L2) = j + 1(≥

3, odd) and d(qk, L2) = k(≥ 2, even), it follows that c2Π(a) ̸= c2Π(b);
• If a, b ∈ L2, then a, b ∈ {vi|1 ≤ i ≤ n, i is even}. Since d(vi, L3) = i(even)

for 1 ≤ i ≤ ⌊n
2 ⌋ and d(vi, L3) = n − i + 1(odd) for ⌊n

2 ⌋ < i ≤ n, it follows
that c2Π(a) ̸= c2Π(b);

• If a, b ∈ L3, then a, b ∈ {pj |1 ≤ j ≤ ⌊n
2 ⌋, j is odd} ∪ {qk|1 ≤ k ≤

⌊n
2 ⌋, k is odd}. Since d(pj , L2) = j + 1(≥ 2, even) and d(qk, L2) = k(≥

1, odd), it follows that c2Π(a) ̸= c2Π(b).

Since all vertices in Jn have distinct color codes, c2 is a locating-coloring in
Jn. Therefore χL(Jn) ≤ 3. □

Theorem 3.3. The locating-chromatic number of J(m,n) for m,n ≥ 1 is χL(J(m,n)) =
max{m+ 1, n+ 2}. In particular,

χL(J(m,n)) =

{
m+ 1, m > n,

n+ 2, m ≤ n.

Proof. Let c be a proper coloring in J(m,n). Observe that ∆+(J(m,n)) = d+(x) =
d+(y) = m. By Corollary 2.3, we have χL(J(m,n)) ≥ m + 1. Furthermore,
it is observed that N(vi) = N(vj) = {x, y} for all 1 ≤ i, j ≤ n where i ̸= j.
Consequently, it follows that c(vi) ̸= c(vj). Wlog, assume c(vi) = i for 1 ≤ i ≤ n.
Since x and y are adjacent vertices and share adjacency with vi(1 ≤ i ≤ n), it is
essential that x and y receive distinct colors not belonging to the set {1, 2, ..., n}.
Thus, assume c(x) = n + 1 and c(y) = n + 2. This assignment leads to the
observation that χL(J(m,n)) ≥ n+ 2. From the observations, it can be concluded
that χL(J(m,n)) ≥ max{m+ 1, n+ 2}.

Case 1. m > n. It follows that max{m + 1, n + 2} = m + 1, implying that
χL(J(m,n)) ≥ m+ 1. To establish an upper bound, define a coloring c1 such that
c1(vi) = c(vi) for all 1 ≤ i ≤ n, c1(x) = c(x), and c1(y) = c(y). Then, assign colors
1, 2, ..., n, n+ 2, ...,m+ 1 to all leaves of x, and colors 1, 2, ..., n+ 1, n+ 3, ...,m+ 1
to all leaves of y (see Figure 6).
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Figure 6. The locating-coloring c1 in J(m,n) for m > n

.

Let Π = {Lk|1 ≤ k ≤ m + 1} be a partition of V (J(m,n)) induced by c1,
where Lk containing vertices of color k. Let a and b be two distinct vertices such
that c1(a) = c1(b).

• If a, b ∈ Lk(1 ≤ k ≤ n), then a, b ∈ {vk, xk, yk}. The color codes of vk, xk,
and yk are distinguished from the (n+ 1)-th and (n+ 2)-th entries, where
c1Π(vk) = (..., 1, 1, ...), c1Π(xk) = (..., 1, 2, ...), and c1Π(yk) = (..., 2, 1, ...).
Hence, c1Π(a) ̸= c1Π(b);

• If a, b ∈ Ln+1, then a, b ∈ {x, yn+1}. Since d(x, L1) = 1 and d(yn+1, L1) =
2, it follows that c1Π(a) ̸= c1Π(b);

• If a, b ∈ Ln+2, then a, b ∈ {y, xn+1}. Since d(y, L1) = 1 and d(xn+1, L1) =
2, it follows that c1Π(a) ̸= c1Π(b);

• If a, b ∈ Lk(n + 3 ≤ k ≤ m + 1), then a, b ∈ {xk−1, yk−1}. The color
codes of xk−1 and yk−1 are distinguished from the (n+ 1)-th and (n+ 2)-
th entries, where c1Π(xk−1) = (..., 1, 2, ...) and c1Π(yk−1) = (..., 2, 1, ...).
Hence, c1Π(a) ̸= c1Π(b).

Since all vertices in J(m,n) have distinct color codes, c1 is a locating-coloring
in J(m,n). Therefore χL(J(m,n)) ≤ m+ 1.

Case 2. m ≤ n. It follows that max{m + 1, n + 2} = n + 2, implying that
χL(J(m,n)) ≥ n+ 2. To establish an upper bound, define a coloring c2 such that
c2(vi) = c(vi) for all 1 ≤ i ≤ n, c2(x) = c(x), and c2(y) = c(y). Then, given that
m ≤ n, all leaves of x and y can be assigned to colors 1, 2, ...,m respectively (see
Figure 7).
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Figure 7. The locating-coloring c2 in J(m,n) for m ≤ n

.

Let Π = {Lk|1 ≤ k ≤ n + 2} be a partition of V (J(m,n)) induced by c2,
where Lk containing vertices of color k. Let a and b be two distinct vertices such
that c2(a) = c2(b). It follows that a and b must be contained in L1, L2, ..., Lm

since Lm+1, Lm+2, ..., Ln+2 are singleton sets. Observe that Lk = {vk, xk, yk} for
1 ≤ k ≤ m. For each k(1 ≤ k ≤ m), the color codes of vk, xk, and yk have 0 for
its k-th entry, and are distinguished from their (n + 1)-th and (n + 2)-th entries,
where c2Π(vk) = (..., 1, 1), c2Π(xk) = (..., 1, 2), and c2Π(yk) = (..., 2, 1). Thus,
c2Π(a) ̸= c2Π(b).

Since all vertices in J(m,n) have distinct color codes, c2 is a locating-coloring
in J(m,n). Therefore, χL(J(m,n)) ≤ n+ 2.

□

Acknowledgement. The author would like to express their deep gratitude to the
referee for his/her careful review and helpful comments.

REFERENCES

[1] G. Chartrand, D. Erwin, M. A. Henning, P. J. Slater, and P. Zhang, “Graphs of order n with

locating-chromatic number n- 1,” Discrete mathematics, vol. 269, no. 1-3, pp. 65–79, 2003.

https://doi.org/10.1016/S0012-365X(02)00829-4.
[2] G. Chartrand, D. Erwin, M. A. Henning, P. J. Slater, and P. Zhang, “Graphs of order n with

locating-chromatic number n- 1,” Discrete mathematics, vol. 269, no. 1-3, pp. 65–79, 2003.

https://doi.org/10.1016/S0012-365X(02)00829-4.
[3] I. A. Purwasih and E. T. Baskoro, “The locating-chromatic number of certain halin graphs,”

in AIP Conference Proceedings, vol. 1450, pp. 342–345, American Institute of Physics, 2012.
https://doi.org/10.1063/1.4724165.

[4] A. Behtoei and M. Anbarloei, “The locating-chromatic number of the join of graphs,” Bul-

letin of The iranian Mathematical Society, vol. 1450, pp. 1491–1504, 2014. http://bims.
iranjournals.ir/article_580.html.

https://doi.org/10.1016/S0012-365X(02)00829-4
https://doi.org/10.1016/S0012-365X(02)00829-4
https://doi.org/10.1063/1.4724165
http://bims.iranjournals.ir/article_580.html
http://bims.iranjournals.ir/article_580.html


10

[5] A. Behtoei and B. Omoomi, “On the locating-chromatic number of the cartesian product of

graphs,” Ars Combinatoria, vol. 126, pp. 221–235, 2016. https://doi.org/10.1016/j.dam.

2011.07.015.
[6] E. T. Baskoro and I. A. Purwasih, “The locating-chromatic number for corona product of

graphs,” Southeast-Asian Journal of Sciences, vol. 1, pp. 124–134, 2012. http://dx.doi.
org/10.5614/ejgta.2013.1.2.4.

[7] Asmiati, E. T. Baskoro, H. Assiyatun, D. Suprijanto, R. Simanjuntak, and S. Utunggadewa,

“Locating-chromatic number of firecracker graphs,” Far East J. Math. Sci., vol. 63, no. 1,
pp. 11–23, 2012.

[8] N. M. Surbakti, D. Kartika, H. Nasution, and S. Dewi, “The locating chromatic number for

pizza graphs,” Sainmatika: Jurnal Ilmiah Matematika Dan Ilmu Pengetahuan Alam, vol. 20,
no. 2, pp. 126–131, 2023. https://doi.org/10.31851/sainmatika.v20i2.13085.

[9] A. Irawan, A. Asmiati, L. Zakaria, and K. Muludi, “The locating-chromatic number of origami

graphs,” Algorithms, vol. 14, no. 6, p. 167, 2021. https://doi.org/10.3390/a14060167.
[10] D. K. Syofyan, E. T. Baskoro, and H. Assiyatun, “On the locating-chromatic number of

homogeneous lobsters,” AKCE International Journal of Graphs and Combinatorics, vol. 10,

no. 3, pp. 245–252, 2013. https://www.tandfonline.com/doi/abs/10.1080/09728600.2013.
12088741.

[11] Asmiati, “On the locating-chromatic numbers of non-homogeneous caterpillars and firecracker
graphs,” Far East J. Math. Sci., vol. 100, no. 8, pp. 1305–1316, 2016. http://dx.doi.org/

10.17654/MS100081305.

[12] N. Inayah, W. Aribowo, and M. M. Windra Yahya, “The locating chromatic number of book
graph,” Journal of Mathematics, vol. 2021, no. 1, p. 3716361, 2021. https://doi.org/10.

1155/2021/3716361.

[13] A. Behtoei and B. Omoomi, “On the locating chromatic number of kneser graphs,” Discrete
applied mathematics, vol. 159, no. 18, pp. 2214–2221, 2011. https://doi.org/10.1016/j.

dam.2011.07.015.

[14] E. T. Baskoro and A. Asmiati, “Characterizing all trees with locating-chromatic number 3,”
Electronic Journal of Graph Theory and Applications (EJGTA), vol. 1, no. 2, pp. 109–117,

2013. http://dx.doi.org/10.5614/ejgta.2013.1.2.4.

[15] Asmiati and E. T. Baskoro, “Characterizing all graphs containing cycles with locating-
chromatic number 3,” in AIP conference proceedings, vol. 1450, pp. 351–357, American

Institute of Physics, 2012. https://doi.org/10.1063/1.4724167.

[16] Arfin and E. T. Baskoro, “Unicyclic graph of order n with locating-chromatic number n−2,”
Jurnal Matematika dan Sains, vol. 24, no. 2, pp. 36–45, 2019. https://dx.doi.org/10.

19184/ijc.2021.5.2.3.
[17] E. T. Baskoro and A. Arfin, “All unicyclic graphs of order n with locating-chromatic number

n-3,” Indonesian Journal of Combinatorics, vol. 5, no. 2, pp. 73–81, 2021. http://dx.doi.

org/10.19184/ijc.2021.5.2.3.
[18] S. Lee and A. Lee, “On super edge-magic graphs with many odd cycles,” Congressus Nu-

meratum, pp. 65–80, 2003. https://www.mdpi.com/1999-4893/14/6/167#.

[19] D. A. Azka, R. Lisaida, and Y. Susanti, “Pelabelan harmonis pada graf kincir tiga dan graf
n-ubur-ubur,” in Semin Mat dan Pendidik Mat UNY, pp. 15–20, 2017.

[20] K. Akbar and K. A. Sugeng, “Pelabelan graceful pada graf siput dan graf ubur-ubur,” in

Pattimura Proceeding: Conference of Science and Technology, pp. 143–148, 2021. https:
//ojs3.unpatti.ac.id/index.php/pcst/article/view/5647.

https://doi.org/10.1016/j.dam.2011.07.015
https://doi.org/10.1016/j.dam.2011.07.015
http://dx.doi.org/10.5614/ejgta.2013.1.2.4
http://dx.doi.org/10.5614/ejgta.2013.1.2.4
https://doi.org/10.31851/sainmatika.v20i2.13085
https://doi.org/10.3390/a14060167
https://www.tandfonline.com/doi/abs/10.1080/09728600.2013.12088741
https://www.tandfonline.com/doi/abs/10.1080/09728600.2013.12088741
http://dx.doi.org/10.17654/MS100081305
http://dx.doi.org/10.17654/MS100081305
https://doi.org/10.1155/2021/3716361
https://doi.org/10.1155/2021/3716361
https://doi.org/10.1016/j.dam.2011.07.015
https://doi.org/10.1016/j.dam.2011.07.015
http://dx.doi.org/10.5614/ejgta.2013.1.2.4
https://doi.org/10.1063/1.4724167
https://dx.doi.org/10.19184/ijc.2021.5.2.3
https://dx.doi.org/10.19184/ijc.2021.5.2.3
http://dx.doi.org/10.19184/ijc.2021.5.2.3
http://dx.doi.org/10.19184/ijc.2021.5.2.3
https://www.mdpi.com/1999-4893/14/6/167#
https://ojs3.unpatti.ac.id/index.php/pcst/article/view/5647
https://ojs3.unpatti.ac.id/index.php/pcst/article/view/5647

	1. INTRODUCTION
	2. BASIC PROPERTIES
	3. MAIN RESULTS
	REFERENCES

