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Abstract. Microcredit is a method of lending small amounts of money to low-

income individuals who have no access to traditional financial institutions. Upon

applying for a loan, an individual may either be able to repay it and be granted a

loan again, otherwise s/he demands for a new loan. These events influence certain

factors, which can be illustrated through a hidden Markov model (HMM). This study

provides a hidden Markov representation of microcredit taking into consideration

the borrower’s acquisition of small businesses. Model algorithms used in addressing

the problems in HMM, such as the Viterbi algorithm, are discussed and implemented

via numerical examples.
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1. INTRODUCTION

Microfinance is the provision of various financial services to poor or low in-
come individuals who have no access to traditional financial institutions. Such fi-
nancial service is microcredit, which involves granting of small loans to individuals.
These loans are used to support income-generating activities, such as establishing
or expanding borrowers’ own small businesses, which in turn would enable them
to raise their income and improve their standard of living. To cater to the specific
needs and preferences of the borrowers, microcredit institutions offer options for
both individual and group lending. This study focuses on representing microcredit
in the case of an individual borrower.

There are various studies about microcredit and its representation. Diener
et al. [3] proposed a simplified Markov chain representation of microcredit which
describes the repayment process of an individual borrower. The expected total
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discounted return of a borrower is computed and the absence of strategic default is
analyzed. Diener and Khodr [4] studied the process for the case of two borrowers.
Bernardino and Santos [2] extended these results for the case of three borrowers.

Meanwhile, a hidden Markov model (HMM) can be used in describing various
processes. Segui [18], for example, utilized Markov and hidden Markov models in
predicting browser behavior on a vehicle website. In finance, Kamath and Jahan
[11] predicted possible loan defaulters in banks by performing sentiment analysis on
Facebook posts and incorporating these into a hidden Markov model to estimate the
probabilities of loan default. Li [12] applied HMM in predicting financial market
behaviors. Giamperi et al. [6] modelled default in bond portfolios as a hidden
Markov process to identify risk factors.

Although HMM serves as a valuable tool in various fields including forecasting
and finance, only a few provide such representation in microcredit, using different
observable processes. Ntwiga et al. [13] used HMM in identifying credit scores of
M-Shwari microcredit clients in Kenya, which utilized socio-demographics, telecom-
munication characteristics, and account activities. Ntwiga and Weke [15] utilized
borrower deposits and withdrawal dynamics of M-Shwari clients in HMM for credit
scoring. Ntwiga et al. [14] utilized risk financial activities and credit scores in HMM
training, which aids in identifying who among low earners qualify for a microloan.
This study aims to contribute to existing literature by extending a Markov model
of microcredit for individual lending by Diener et al. [3] to provide a simple theo-
retical hidden Markov representation. This study introduces acquisition of a small
business as the observable component of the lending Markov process. Moreover,
the fundamental problems in HMM as well as their corresponding algorithms are
studied and illustrated via numerical examples.

2. Markov Chains

A Markov chain is a stochastic model which describes sequences of some
random variables where the probability of a future event depends only on the
current event.

Definition 2.1. A discrete-time stochastic process {Xn}n∈N0
, or simply {Xn}, is

called a Markov Chain if

P(Xn = j | Xn−1 = xn−1, . . . , X0 = x0) = P(Xn = j | Xn−1 = xn−1),

for x0, x1, . . . , xn−1, j ∈ N0; with transition probability matrix T of order N ,
with the (i, j)-th entry given by

ti,j = P(Xn+1 = sj | Xn = si),

where 0 ≤ ti,j ≤ 1 and

N∑
j=1

ti,j = 1 for each row i ∈ {1, . . . , N}.

Diener [3] presented a simple Markov chain representation of microcredit for
the case of an individual borrower. In the model, a borrower can either be in a
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state of demanding for a loan, denoted by D, or in a state of being a beneficiary of a
loan, denoted by B. The probability that a borrower in state D will be granted and
be a beneficiary of a loan is given by ϕ, otherwise s/he will stay in state D with a
probability 1−ϕ. If the borrower is able to repay the loan with probability δ, then
s/he can stay in state B and be a beneficiary again. Otherwise, s/he will proceed
to state D with probability 1 − δ and demand for a loan again. This stochastic
sequence can be modelled by a Markov chain {Xn}, where each Xn is drawn from
the state space

S := {D,B} . (1)

Figure 1. Markov Chain representation of microcredit [5]

The transition probability matrix of the Markov chain {Xn} is given by

T =

[
1− ϕ ϕ
1− δ δ

]
, (2)

where

P(Xn+1 = D | Xn = D) = 1− ϕ

P(Xn+1 = D | Xn = B) = 1− δ

P(Xn+1 = B | Xn = D) = ϕ

P(Xn+1 = B | Xn = B) = δ.

Remark 2.2. The initial state distribution π0 of the Markov chain {Xn} is given
by

π0 =
[
π0(D) π0(B)

]
=
[
1 0

]
, (3)

which follows from the idea that a borrower needs to demand for a loan first before
being granted a loan.

To illustrate, suppose that the probability that a borrower moves from state
D to state B is equal to 0.7. Then, from (2), the probability of staying in state D
is equal to 1 − 0.7 = 0.3. Meanwhile, we let the probability of staying in state B
be equal to 0.4. Then the probability of transitioning from state B to state D is
equal to 1− 0.4 = 0.6. Hence, the transition probability matrix for the case of our
example is given by

T =

[
0.3 0.7
0.6 0.4

]
. (4)
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Suppose a borrower is in state D in the first period. We wish to identify
the probability that the borrower for the next 4 periods is in the state sequence
D − B − B − D. Formally, the observation sequence, denoted Q, is given by
Q = {D,D,B,B,D}, and we want to solve for P(Q). This can be expressed and
evaluated as

P(Q) = P(D) · P(D|D) · P(B|D) · P(B|B) · P(D|B)

= π0(D) · t11 · t12 · t22 · t21
= 1(0.3)(0.7)(0.4)(0.6)

= 0.0504.

Note that such probability can be solved since each state in the considered Markov
process corresponds to an observable event. We extend this notion to the case when
a Markov process involves an underlying hidden component but can be observed
through another stochastic process.

3. Hidden Markov Models

A hidden Markov model (HMM), denoted {Xn, Yn}n∈N0
is a Markov process

composed of two components Xn and Yn. The first component {Xn} is a Markov
chain that is characterized by states which are “hidden” or unobservable. On the
other hand, the second component {Yn} is a stochastic process, not necessarily a
Markov chain, is characterized by states which are observable. A hidden Markov
model assumes the existence of states which are not directly observable, and that
these states influence the observable components. Hence, by examining a set of
observations, we also get to have an insight about the underlying Markov process.

A hidden Markov model is formally defined by the following components [1], [10]:

• The state space S = {s1, s2, . . . , sN}, which is the set of N possible hidden
states,

• The observation sequence O = {y1, y2, . . . , yk}, which is the set of k obser-
vations, where each element is taken from the set of q possible observable
states or emissions, given by P = {p1, p2, . . . , pq},

• The initial state distribution vector π0 given by

π0 =
[
π0(s1) π0(s2) · · · π0(sN )

]
,

where each i-th entry represents the probability that the model starts at
state si,

• The transition probability matrix T = [ti,j ] of the hidden Markov compo-
nent {Xn}, where each (i, j)-th entry represents the probability of transi-
tioning from state si to state sj , and

• The emission probability matrix M = [mi,j ], where each (i, j)-th entry
represents the probability of an observation pj being generated when the
hidden Markov process is in state si.

A hidden Markov model is characterized by two key assumptions [10], [18]:
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• Markov Assumption: The probability of a particular hidden state depends
only on the previous hidden state. That is,

P(Xn = s | X1 = x1, . . . , Xn−1 = xn−1) = P(Xn = s | Xn−1 = xn−1),

where n ∈ N0 and s, x1, . . . , xn ∈ S.

• Output Independence Assumption: The probability of observing a particu-
lar output depends only on the hidden state that produced such observa-
tion. That is,

P(Yn = p | X1 = x1, . . . , Xn = xn, Y1 = y1, . . . , Yn−1 = yn−1) = P(Yn = p | Xn = xn),

where n ∈ N0, x1, . . . , xn ∈ S and p, y1, . . . , yn−1 ∈ P .

These assumptions lead to the following theorem.

Theorem 3.1. Let n, k ∈ N0, and let {Xn, Yn}n∈N0
be a hidden Markov model,

where {Xn} is an unobservable Markov process with state space S, and {Yn} is an
observable process of emissions, whose values are in P . If k ≤ n, then Xn+1 and
Yk are conditionally independent given Xn, that is,

P (Xn+1 = s|Xn = xn, Yk = yk) = P (Xn+1 = s|Xn = xn) ,

where s, xn ∈ S and yk ∈ P .

Proof. Let n, k ∈ N0 and let k ≤ n. Consider P (Xn+1 = s|Xn = xn, Yk = yk).

Case 1: Suppose k = n. By the definition of conditional probability and by the
observation independence assumption, we have

P (Xn+1 = s|Xn = xn, Yn = yn) =
P (Xn+1 = s,Xn = xn, Yn = yn)

P {Xn = xn, Yn = yn}

=
P (Xn+1 = s, Yn = yn|Xn = xn)P (Xn = xn)

P (Yn = yn|Xn = xn)P (Xn = xn)

=
P (Xn+1 = s, Yn = yn|Xn = xn)

P (Yn = yn|Xn = xn)

=
P (Yn = yn|Xn = xn)P (Xn+1 = s|Xn = xn)

P (Yn = yn|Xn = xn)

= P (Xn+1 = s|Xn = xn) .
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Case 2: Suppose k < n and let xk ∈ S. Because {Xn} is a Markov chain, it follows
that

P (Xn+1 = s|Xn = xn, Yk = yk) = P (Xn+1 = s|Xn = xn, Xk = xk, Yk = yk)

=
P (Xn+1 = s,Xn = xn, Xk = xk, Yk = yk)

P (Xn = xn, Xk = xk, Yk = yk)

=
P (Xn+1 = s,Xn = xn, Yk = yk|Xk = xk)

P (Xn = xn, Yk = yk|Xk = xk)

=
P (Yk = yk|Xk = xk)P (Xn+1 = s,Xn = xn|Xk = xk)

P (Yk = yk|Xk = xk)P (Xn = xn|Xk = xk)

=
P (Xn+1 = s,Xn = xn, Xk = xk)P (Xk = xk)

P (Xn = xn, Xk = xk)P (Xk = xk)

= P (Xn+1 = s|Xn = xn) .

□

The event that a borrower is in a state given in (1), of being in demand
or beneficiary of a loan, may not be directly observed. It may be due to data
privacy, borrowers’ personal reasons, or client records unavailability. But these
events definitely influence various factors in the lending process. One of the main
goals of microcredit is to provide borrowers with capital for income-generating
activities, such as starting or expanding their own business, which would eventually
aid in loan repayment. Thus, the acquisition of a new small business is an event
influenced by the state of a borrower. Such small business, which are directly
observable, could be street food carts, mini sari-sari stores and bakeries, hair and
nail salon, alterations shop, cleaning services, among others. If a borrower is in
state D, the probability that s/he has not acquired a new small business is given
by λ, while the probability that s/he has acquired a new small business is given by
1 − λ. On the other hand, if the borrower is in state B, the probability that s/he
has not acquired a new small business is given by ε, while the probability that s/he
has acquired a new small business is given by 1−ε. Such process can be represented
by a hidden Markov model as follows.

Proposition 3.2. A hidden Markov representation of microcredit repayment is
given by

{Xn, Yn}n∈N0
, Xn ∈ S := {D,B} , Yn ∈ P := {0, 1} ,

where D denotes the state of a borrower being in demand of a loan, B denotes the
state of being a beneficiary of a loan, 0 denotes the event that a borrower has no
new small business, and 1 denotes the event that a borrower has acquired a new
small business, such that

P(Yn = 0 | Xn = D) = λ

P(Yn = 1 | Xn = D) = 1− λ

P(Yn = 0 | Xn = B) = ε

P(Yn = 1 | Xn = B) = 1− ε.
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The transition probability matrix T of the hidden Markov model is given by (2)
while the emission probability matrix M is given by

M =

[
λ 1− λ
ε 1− ε

]
. (5)

Remark 3.3. The initial state distribution π0 of the hidden Markov representation
{Xn, Yn}n∈N0

is the initial state distribution of the unobservable Markov component

{Xn}n∈N0
given in (3).

Figure 2. Hidden Markov chain representation of microcredit

4. HMM Problems and Algorithms

A hidden Markov model is characterized by three fundamental problems:

• Likelihood : Given a hidden Markov model with transition and emission
probability matrices T and M , respectively, determine the likelihood of an
observation sequence O.

• Learning : Given an observation sequence O and a hidden state space S,
learn the hidden Markov model’s transition and emission probability ma-
trices T and M , respectively.

• Decoding : Given a hidden Markov model with transition and emission prob-
ability matrices T and M , respectively, and an observation sequence O,
determine the most probable hidden state sequence Q.

Each of these problems can be solved using known algorithms. We discuss these
algorithms following [10], with complete details found in [8] and [18].
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4.1. Forward Algorithm.

The likelihood problem aims to to evaluate the probability of a given emission
sequence O being observed from a hidden Markov model {Xn, Yn}. Given an
observation sequence O = {y1, y2, . . . , yk}, there are various possible hidden state
sequences Q that must have produced such observation. Hence, to compute for
P(O), the sum of the joint probability of O and Q over all possible hidden state
sequences Q is computed. That is, by the definition of conditional probability and
by the two key assumptions of HMM,

P (O) =
∑
Q

P (O,Q)

=
∑
Q

P (O|Q)P (Q)

=
∑
Q

[(
k∏

i=1

P (Yi = yi|Xi = xi)

)(
k∏

i=1

P (Xi = xi|Xi−1 = xi−1)

)]
.(6)

For a hidden Markov model {Xn, Yn} with a state space of N elements and
an observation sequence of length k, there are Nk possible hidden state sequences
Q. Thus, when dealing with HMM with a large state space and a long observation
sequence, the number of possible hidden state sequences would also be very large,
and so computing for the likelihood of O using (6) would not be practical. This is
addressed by the forward algorithm. To implement this, we start with the following
definition taken from [18].

Definition 4.1. Let {Xn, Yn} be a hidden Markov model with state space S =
{s1, . . . , sN} and an observation sequence O = {y1, . . . , yk}. The forward path
probability of the i-th state at time j, denoted fi,j, is the probability of being in
state si after seeing the first j observations. That is,

fi,j = P(Y1 = y1, Y2 = y2, . . . , Yj = yj , Xj = si). (7)

For the algorithm, we construct a forward probability matrix F = [fi,j ],
where each (i, j)-th entry represents the forward probability of the i-th state at
time j. Let zj ∈ {1 . . . , q} such that yj = pzj for all yj ∈ O and i ∈ {1 . . . , N}.
By definition of conditional probability, each entry in the first column of F can be
written

fi,1 = P(Y1 = y1, X1 = si)

= P(Y1 = pz1 | X1 = si)P(X1 = si)

= mi,z1π0(si).

(8)
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To obtain the succeeding columns of F , we let i ∈ {1 . . . , N} and j ∈ {2, . . . , k}.
By definition of conditional probability and the law of total probability,

fi,j = P(Y1 = y1, . . . , Yj = yj , Xj = si)

= P(Yj = yj |Xj = si)

N∑
l=1

P(Y1 = y1, . . . , Yj−1 = yj−1, Xj = si, Xj−1 = sl)

= P(Yj = yj |Xj = si)

N∑
l=1

P(Y1 = y1, . . . , Yj−1 = yj−1, Xj = si|Xj−1 = sl)P(Xj−1 = sl)

= P(Yj = pzj |Xj = si)

N∑
l=1

P(Xj = si|Xj−1 = sl)P(Y1 = y1, . . . , Yj−1 = yj−1, Xj−1 = sl)

= mi,zj

N∑
l=1

tl,i fl,j−1.

Finally, note that

P(O) = P(Y1 = y1, . . . , Yk = yk)

=

N∑
i=1

P(Y1 = y1, . . . , Yk = yk, Xk = si)

=

N∑
i=1

fi,k.

Thus, P(O) is obtained by taking the sum of the entries of the last column of F .
This solves the likelihood problem.

4.2. Forward-Backward Algorithm.

The learning problem aims to estimate the model’s transition and emission
probability matrices that would best explain a given observation sequence [7]. That
is, for a hidden Markov model {Xn, Yn} with an observation sequence O, we need to
find the model’s transition and emission probability matrices T andM , respectively,
that would maximize the likelihood of O. However, there is no known algorithm
yet that can estimate matrices that maximize P(O). Instead, the forward-backward
algorithm is implemented such that the resulting P(O) is locally maximized [16]. As
the name suggests, the algorithm utilizes both forward and backward probabilities.
The backward probability is defined as follows.

Definition 4.2. Let {Xn, Yn} be a hidden Markov model with state space S =
{s1, . . . , sN} and O = {y1, . . . , yk} be a sequence of observations. The backward
probability of the i-th state at time j, denoted bi,j, is the probability of observing
the emissions from time j+1 to the end, given that the model is in state si at time
j. That is,

bi,j = P(Yj+1 = yj+1, Yj+2 = yj+2, . . . , Yk = yk | Xj = si). (9)
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Let i ∈ {1, . . . , N} and at j = k, let bi,k = 1 [10]. For j ∈ {k − 1, . . . , 1}, the
backward probability bi,j can be expressed as follows.

bi,j =
P (Yj+1 = yj+1, Yj+2 = yj+2, . . . , Yk = yk, Xj = si)

P (Xj = si)

=

N∑
l=1

P (Yj+1 = yj+1, Yj+2 = yj+2, . . . , Yk = yk|Xj = si, Xj+1 = sl)P (Xj+1 = sl|Xj = si)

=

N∑
l=1

P (Yj+1 = yj+1|Xj+1 = sl)P (Yj+2 = yj+2, . . . , Yk = yk|Xj+1 = sl)P (Xj+1 = sl|Xj = si)

=

N∑
l=1

P (Xj+1 = sl|Xj = si)P (Yj+1 = yj+1|Xj+1 = sl) bl,j+1

=

N∑
l=1

ti,lml,zj+1
bl,j+1.

Let {Xn, Yn} be a hidden Markov model and let O be a sequence of obser-
vations. Moreover, let fi,j and bi,j be the forward and backward probabilities as
given in (7) and (9), respectively. The forward-backward algorithm starts with ini-
tial guesses for the model’s transition and emission probability matrices, denoted
T̂ = [t̂i,j ] and M̂ = [m̂i,j ]. Thorough computation [18] yields new estimates for
the transition and emission probability matrices, that is, for i ∈ {1, . . . , N} and
j ∈ {1, . . . , k},

T̄ = [t̄i,j ] =


k−1∑
t=1

fi,tt̂i,jm̂j,zt+1bj,t+1

k−1∑
t=1

N∑
r=1

fi,tt̂i,rm̂r,zt+1br,t+1

 and M̄ =


k∑

t=1|yt=pj

fi,tbi,t

k∑
t=1

fi,tbi,t

 .

The algorithm proceeds by iteratively obtaining new estimates for the transition
and emission probability matrices wherein each iteration increases the likelihood
of the observation state sequence O. The algorithm only stops when the resulting
P(O), obtained via the forward algorithm, converges to a local maximum or when a
certain number of iterations is reached [16]. Upon convergence, we take the newly
obtained matrices as the model’s transition and emission probability matrices.

4.3. Viterbi Algorithm.

The decoding problem aims to obtain the most probable hidden state se-
quence Q given an observation sequence O. That is, if O = {y1, y2, . . . , yk} is a
sequence of emissions observed from a hidden Markov process {Xn, Yn}, we need to
find the particular hidden state sequence Q = {q1, q2, . . . , qk} such that the prob-
ability P(Q|O) is maximum. Since P(O) does not directly depend on the hidden
state sequence Q, we can just find the particular sequence of hidden states that
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maximizes P(Q,O) [17]. That is,

argmax
Q

P(Q,O) = argmax
Q

[
k∏

i=1

P(Yi = yi | Xi = xi)

k∏
i=1

P(Xi = xi | Xi−1 = xi−1)

]
.

Hence, an approach to the problem would be to compute P(Q,O) for all possible
hidden state sequences Q and choose the one which produces the maximum proba-
bility. However, similar with the likelihood problem, this method is inefficient since
we might deal with a large number of possible hidden state sequences. To address
this, a decoding algorithm known as the Viterbi algorithm is utilized.

Definition 4.3. Let {Xn, Yn} be a hidden Markov model with state space S =
{s1, s2, . . . , sN}, O = {y1, y2, . . . , yk} be a sequence of emissions, and Q = {x1, x2, . . . , xk}
be a sequence of hidden states. The Viterbi path probability of the i-th state at time
j is defined

max
x1,x2,...,xj−1

P(X1 = x1, . . . , Xj−1 = xj−1, Y1 = y1, Y2 = y2, . . . , Yj = yj , Xj = si).

Similar to the forward algorithm, the Viterbi algorithm starts by constructing
anN×k matrix V = [vi,j ], whose (i, j)-th entry is the Viterbi path probability of the
i-th state at time j. Note that this is the probability that the hidden Markov process
is in state si after passing through the most probable state sequence x1, . . . , xj−1,
after seeing the first j observations [10]. Let i ∈ {1, . . . , N} and let zj ∈ {1, . . . , q}
such that yj = pzj for all yj ∈ O. Since there is no preceding state at time j = 1,
then from (8), vi,1 is given by

vi,1 = P(Y1 = y1, X1 = si) = mi,z1π0(si).

For the succeeding columns of V , we let i ∈ {1, . . . , N}, j ∈ {2, . . . , k}, and gj ∈
{1, . . . , N} such that xj = sgj for all xj ∈ Q. Then, by definition of conditional
probability and Theorem 3.1, it can be shown that

vi,j =
N

max
l=1

mi,zj tl,ivl,j−1.

Now, note that each entry on the last column of V is given by

vi,k = max
x1,x2,...,xk−1

P(X1 = x1, . . . , Xk−1 = xk−1, Y1 = y1, . . . , Yk = yk, Xk = si).

Taking the maximum of the entries on the last column of V , we have

N
max
i=1

vi,k =
N

max
i=1

[
max

x1,x2,...,xk−1

P(X1 = x1, . . . , Xk−1 = xk−1, Y1 = y1, . . . , Yk = yk, Xk = si)

]
= max

x1,x2,...,xk

P(X1 = x1, . . . , Xk−1 = xk−1, Y1 = y1, . . . , Yk = yk, Xk = xk)

= max
Q

P(Q,O).

(10)
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Now, to retrieve the most probable state sequence Q, we first need to keep track
of the state that maximizes vi,j [16]. To do this, we construct an N × k matrix
W = [wi,j ], whose (i, j)-th entry is the index of the state at time j − 1 that
maximizes vi,j , given by

wi,j = argmax
gj−1

[
P(Yj = yj |Xj = si)P(Xj = si|Xj−1 = sgj−1

) vgj−1,j−1

]
.

Let i ∈ {1, . . . , N}. For the first column of W , we let wi,1 = 0 since there is no
preceding state at time j = 1. For the succeeding columns, given i ∈ {1 . . . , N}
and j ∈ {2 . . . , k}, wi,j it can be shown that

wi,j = arg
N

max
l=1

mi,zj tl,ivl,j−1.

To proceed with the algorithm, let Q∗ = {x∗
1, x

∗
2, . . . , x

∗
k} be the most prob-

able hidden state sequence. From [16], the final state in the state sequence Q∗ is
given by the equation x∗

k = sg∗
k
where

g∗k = arg
N

max
i=1

vi,k. (11)

The prior states in Q∗ can be obtained using the equation x∗
t−1 = sg∗

t−1
where

g∗t−1 = wg∗
t ,t

. That is, for t ∈ {k, . . . , 2},

g∗t−1 = argmax
gt−1

[
P(Yt = yt|Xt = sg∗

t
)P(Xt = sg∗

t
|Xt−1 = sgt−1

) vgt−1,t−1

]
. (12)

From (10) and (11), we have that

max
Q

P(Q,O) =
N

max
i=1

vi,k = vg∗
k,k

. (13)

Moreover, from (12), we have

vg∗
t ,t

= max
gt−1

[
P(Yt = yt|Xt = sg∗

t
)P(Xt = sg∗

t
|Xt−1 = sgt−1

) vgt−1,t−1

]
= P(Yt = yt|Xt = sg∗

t
)P(Xt = sg∗

t
|Xt−1 = sg∗

t−1
) vg∗

t−1,t−1,

(14)
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where t ∈ {k, . . . , 2}. Utilizing (13) and (14), we have

max
Q

P(Q,O) = vg∗
k,k

= vg∗
k−1,k−1 P(Yk = yk|Xk = sg∗

k
)P(Xk = sg∗

k
|Xk−1 = sg∗

k−1
)

= vg∗
k−2,k−2 P(Yk−1 = yk − 1|Xk−1 = sg∗

k
)P(Xk−1 = sg∗

k−1
|Xk−2 = sg∗

k−2
)×

P(Yk = yk|Xk = sg∗
k
)P(Xk = sg∗

k
|Xk−1 = sg∗

k−1
)

...

= vg∗
1 ,1

k∏
l=2

P(Yl = yl|Xl = sg∗
l
)P(Xl = sg∗

l
|Xl−1 = sg∗

l−1
)

= P(Y1 = y1 | X1 = sg∗
1
)P(X1 = sg∗

1
)

k∏
l=2

P(Yl = yl|Xl = sg∗
l
)P(Xl = sg∗

l
|Xl−1 = sg∗

l−1
)

= P (Q∗, O).

This shows that the joint probability of Q and O is at maximum when Q = Q∗.
This implies that Q∗ is the most probable state sequence given an observation
sequence O. This solves the decoding problem.

5. Numerical Illustrations

Let {Xn, Yn} be a hidden Markov representation of microcredit given in
Proposition 3.2. The hidden state space is given by S = {s1, s2} = {D,B} and the
set of possible emissions is given by P = {p1, p2} = {0, 1}. From Remark 3.3, the
initial state distribution of {Xn, Yn} is given by π0 =

[
π0(D) π0(B)

]
=
[
1 0

]
.

To illustrate, let the transition probability matrix be the same as given in (15),
that is,

T =

[
0.3 0.7
0.6 0.4

]
. (15)

Moreover, if the borrower is in state D, we let the probability of not having any new
small business be equal to 0.5. Then, from (5), the probability that s/he acquires a
new small business given that s/he is in state D is 0.5. Meanwhile, if the borrower
is in state B, we let the probability of not having any new small business be equal
to 0.4. Then, from (5), the probability that s/he acquires a new small business
given that s/he is in state B is 0.6. Thus, the emission probability matrix of our
example is given by

M =

[
0.5 0.5
0.4 0.6

]
. (16)

Figure 3 illustrates the hidden Markov model {Xn, Yn}.
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Figure 3. An example of a hidden Markov representation of microcredit

Now suppose we have an observation sequence O = {0, 0, 1, 1, 0}. That is,
at times 1, 2, and 5, the borrower has not acquired any new small business, and
at times 3 and 4, the borrower has acquired a new small business. To solve the
fundamental problems, we implement their corresponding model algorithms using
MATLAB. [8]

For the likelihood problem, we take as input the observation sequence O, the
model’s transition and emission probability matrices, and the initial state distribu-
tion. Implementing the forward algorithm yields

F =

[
0.5 0.075 0.0427 0.0263 0.0158
0 0.105 0.0662 0.0395 0.0103

]
.

Note that each column of matrix F represents the partial probability of O at each
hidden state for each time step. Now, to determine the likelihood of O we just
add the entries on the last column of F . Hence, the likelihood of the sequence
O = {0, 0, 1, 1, 0} is

P(O) = 0.0158 + 0.0103 ≈ 0.026.

For the learning problem, we take the matrices given in (15) and (16) as our
initial estimates for the transition and emission probability matrices, respectively.
The forward-backward algorithm will then continue to re-estimate these matrices
until a certain number of iterations is reached or when the difference between the
consecutive resulting P(O) fall below a specified tolerance. The maximum number
of iterations is set at 10, 000 and tolerance at 10−20. After 217 iterations, the newly
obtained estimates are given by

T =

[
0.2764 0.7236
≈ 0 ≈ 1

]
and M =

[
≈ 1 ≈ 0

0.4472 0.5528

]
. (17)
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From T , we can infer that if a borrower is in state B, it is highly likely that s/he
will stay in state B and that it is almost unlikely that s/he will transition back
to state D. Similarly, it can be implied from matrix M that if a borrower is in
state D, it is almost unlikely that s/he acquires a new small business. However, we
can see that these does not agree with our previously obtained results. Frazzoli [7]
noted that to produce better representations for the matrices T and M , we need
to provide a larger observation data. Hence, such conflict probably emerged since
we only have few observations for our example.

Finally, for the decoding problem, we take as input the observation sequence
O, the model’s transition and emission probability matrices, and the initial state
distribution. By implementing the Viterbi algorithm, the corresponding most likely
hidden state sequence is given by

Q = D −B −D −B −D,

wherein the joint probability of O and Q is found to be approximately equal to
0.0046. From the obtained sequence Q, we can infer that the borrower is most
likely in the state of demanding for a loan when s/he acquired his/her first small
business; and when the borrower has acquired another small business, s/he is most
likely in the state of being a beneficiary of a loan.

Now suppose there is an equal probability of being in each of the states. That
is, if the borrower is in state D, we let the probability of staying in state D and
the probability of transitioning to state B be both equal to 0.5. Similarly, if the
borrower is in state B, let the probability of transitioning to either state B or D
be equal to 0.5. Moreover, if the borrower is in either state D or B, we let the
probability of having or not having any new small business be equal to 0.5. Then

T =

[
0.5 0.5
0.5 0.5

]
and M =

[
0.5 0.5
0.5 0.5

]
. (18)

Given the same observation sequence O = {0, 0, 1, 1, 0} and the transition
and emission probability matrices in (18), we get

F =

[
0.5 0.125 0.0625 0.0312 0.0156
0 0.125 0.0625 0.0312 0.0156

]
,

which yields P(O) = 0.0156 + 0.0156 ≈ 0.0312.

Given the initial estimates for T and M in (18), 231 iterations yield the best
estimates given by

T =

[
0.2764 0.7236
≈ 0 ≈ 1

]
and M =

[
≈ 1 ≈ 0

0.4472 0.5528

]
, (19)

with entry values same as that of (17).
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Finally, the resulting most likely hidden state sequence is given by

Q = D −D −D −D −D,

wherein the joint probability of O and Q is found to be approximately equal to
0.002. The obtained sequence Q implies that the borrower is most likely in the
state of being in demand of a loan at all time periods. That is, the borrower didn’t
transition to being a beneficiary of a loan even after acquiring of a new small busi-
ness.

On the other hand, suppose that there is a significantly higher probability of
being in one state than the other. That is, if the borrower is in state D, we let the
probability of staying in state D be equal to 0.1 and the probability of transitioning
to state B be 0.9. Similarly, if the borrower is in state B, we let the probability of
staying in state B be equal to 0.9 and the probability of transitioning back to state
D be equal to 0.1. Moreover, if the borrower is in state D, we let the probability of
not having any new small business be equal to 0.9 and the probability of having a
new small business be equal to 0.1. On the other hand, if the borrower is in state
B, we let the probability of not having any new small business be equal to 0.1 and
the probability having a new small business be equal to 0.9. Thus,

T =

[
0.1 0.9
0.1 0.9

]
and M =

[
0.9 0.1
0.1 0.9

]
. (20)

Given the same observation sequence O = {0, 0, 1, 1, 0} and matrices T and
M in (20), we get

F =

[
0.9 0.081 0.0016 0.0013 0.0098
0 0.0810 0.1312 0.1076 0.0098

]
,

which gives P(O) = 0.0098 + 0.0098 ≈ 0.0196.

Given the initial estimates for T and M in (20), 196 iterations yield the best
estimates given by

T =

[
0.2764 0.7236
≈ 0 ≈ 1

]
and M =

[
≈ 1 ≈ 0

0.4472 0.5528

]
, (21)

which again have the same entries as that of the matrices given in (17) and (19).
This implies that even though we used different initial estimates of T and M , the
resulting final estimates would still be the same given that we have the same ob-
servation sequence.

Finally, the resulting most likely hidden state sequence is given by

Q = D −D −B −B −D,

wherein the joint probability of O and Q is found to be approximately equal to
0.005. The obtained sequence Q implies that the borrower is most likely in the
state of demanding for a loan during the time that s/he has not acquired any small
business and in the state of being a beneficiary of a loan when s/he acquired a new
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small business. We can see that these implications indeed reflect the transition
probability assumptions that we set in the example.

6. Conclusion and Recommendations

This study developed, studied, and illustrated a hidden Markov chain rep-
resentation of microcredit where the hidden component considered is loan benefit,
while the observable component is the borrower’s acquisition of a small business.

The fundamental problems that are of interest when dealing with HMM are
thoroughly discussed and we have shown that these problems can be efficiently
addressed using known algorithms. Then, by giving numerical examples of our hid-
den Markov representation, we were able to illustrate the implementation of these
algorithms which can provide valuable insights regarding the microcredit process.
In particular, by implementing the Viterbi algorithm for the decoding problem,
we have shown that one can infer whether a borrower have been in demand or a
beneficiary of a loan during the time of acquisition of a small business. This could
help assess the effectiveness of microcredit in fostering entrepreneurial activities,
which is one of its main objectives.

For future research, results may be improved by considering a larger set of
data. One can also explore other factors in microlending, such as credit exclusion
for a more detailed representation of the underlying microcredit process. Finally,
one can consider other possible observable sequences that are influenced by the
states of the hiddden Markov process.
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