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Abstract. In this paper, a green inventory model has been developed to explain

the relationship between a single manufacturer and many retailers in a multiplayer

supply chain system. It is assumed that there exist some imperfect items in a quan-

tity lot. In green inventory, one of the important issues is carbon emission with its

cost to inventory management. Some troubles in the transportation process yield

imperfect quality items. This trouble is the potential to increase the amount of

carbon emission and some imperfect quality items. It also affects the cost of the

inventory. Therefore, these two aspects will be analyzed under the shortage backo-

rder policy. Due to the complexity of the model, the classical optimization methods

cannot be used to determine the optimum values exactly. Therefore, formulation

optimization is predominantly conducted using a numerical approach for finding

partial derivatives and Newton Raphson’s method for finding the optimal solution.

These methods are assisted by the Python programming language, operated within

the Google Colab environment and Spyder (Python 3.8) using Anaconda environ-

ment.

Key words and Phrases: Manufacturer, Carbon Emission, Inventory, Imperfect qua-

lity, Python

1. INTRODUCTION

In the production process, products produced by factories managed by man-
ufacturers are not always 100 percent in good condition in terms of quality. This
assumption has become the main premise in modern inventory modeling. The
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existence of imperfect products can be stated either deterministically or proba-
bilistically. Numerous studies have been conducted on inventory models that take
into account the existence of imperfect products. The inventory models for prob-
abilistically imperfect products with the assumption of controlled lead time have
been examined by Lin [1], following the lead-free demand distribution. Similar
research involving controllable lead time was continued by Jha and Shanker [2],
incorporating the assumption of shortage back-ordering.

Additionally, the inventory model for products with imperfect quality was ex-
amined by Mandal and Giri [3] who considered the assumption of increasing quality
through lead time reduction. Other related research on imperfect quality aspect
has been conducted by Hsu and Hsu [4], Bhowmick and Samanta [5], Konstantaras
et al. [6], Alamri et al. [7], and Setiawan et al. [8]. The development of an in-
ventory model depends on predefined assumptions. However, there are still many
conditions and situations in supply chain management that have not been included
in the inventory model for products with imperfect quality.

Recent research in inventory management has focused on environmental as-
pects, particularly carbon emissions (greenhouse gases) produced by production
machinery and equipment, loading and unloading machinery, and vehicle. There
have been several studies that included carbon emission factors in inventory mod-
els such as Rahimi et al. [9], Huang et al. [10], Bozorgi et al. [11], Marchi et al.
[12], Bazan et al. [13], Beccera et al.[14]. Based on the existing findings, it can be
observed that there has been no previous research been previous research in terms
of establishing an inventory model for imperfect quality that takes into account
greenhouse gas emissions, reorder processes, and shortage back-ordering policies
in an objective function formulation. Furthermore, in this research, the analytical
analysis will also be complemented by numerical analysis using algorithm-based
numerical methods. This is because inventory models, which incorporate various
assumptions and parameters, often result in complex forms. The algorithms are
implemented in the Python programming language, which has not been previously
utilized in inventory model research.

The article is structured into several chapters, namely the introduction, re-
search methodology, formulation of mathematical models, optimum analysis, nu-
merical analysis, and conclusion. The research methodology section explains the
theoretical research methodology used in this study. Assumptions, mathematical
notations used, inventory model formulations, and optimum analysis are described
in the third chapter of the discussion. The explanations in this article are concluded
with a summary and suggestions for further research, which are presented in the
last section.

2. MATHEMATICAL MODELLING AND OPTIMUM ANALYSIS

In this section, an explanation will be given regarding the formation of an
inventory model for products with imperfect quality and considering carbon emis-
sions. Below are the mathematical notations used in the following table:
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Table 2.1. Mathematical Notations (1)

Notation Descriptions

qp Batch production size at the manufacturing site.
qi Lot size or product shipment from the manufacturing site to the retailer i.

The decision variable (integer).
The decision variable (integer).

Bi The maximum quantity of reorder per unit at retailer i.
n Number of shipments in each batch produced by the manufacturer.

The decision variable (integer), qp =
∑n

i=1 nqi.
Di Demand from the retailer i.
D Cumulative demand.
P Production rate (P > D, with D =

∑n
i=1 Di).

Cp Set up the cost per production process for the manufacturer.

Cb
i Ordering cost per unit for retailer i.

γi Percentage of products with imperfect quality in lot q for retailer i.
fi(γi) The probability density function of γi for each i.
ω Compensation cost per unit of imperfect quality products.
si Sorting cost per unit of products for retailer i.
bi Reorder cost per unit of products per unit time for retailer i.
hP Holding cost per unit product per unit time for the manufacturer.

hb
i Holding cost per unit product per unit time for retailer i.

Fi Transportation cost per shipment from the manufacturer to retailer i.
T The time length between one shipment and the next.

Table 2.2. Mathematical Notations (2)

Notation Descriptions

T1 The period during the production process at the manufacturing site.
T2 The period when the manufacturer fulfills the demands of

all retailers from the inventory kept at the manufacturing site.
Tt Cycle Time. Tt = T1 + T2 = nT.
∗ Superscripts for symbols of optimum values.

E[.] Expected value.
Ji Distance between the manufacturer and retailer i.

EG1 Carbon gas emissions from a specific type of vehicle per unit distance.
EG2 Carbon gas emissions from loading equipment per 1 kg product.
EG3 Carbon gas emissions from unloading equipment per 1 kg product.
Cl Cost of loading per unit product.
Cul Cost for unloading per unit product.
Cj Carbon emission cost per unit distance.
mpp Weight per unit product.
Γi(.) Retailer i’s objective function.
Λi(.) Manufacturer’s objective function.

The main assumptions used in the formation of the mathematical model are ex-
plained.

(1) The supply chain system consists of one manufacturer that produces a single
type of product and multiple retailers who place orders for the product with
the manufacturer.
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(2) The inventory management scheme used is the integration scheme.
(3) The order level is known, constant, and continuous.
(4) The lead time is known and constant.
(5) Imperfect products exist in lot size q. The percentage of imperfect quality

products γi has a probability density function f(γi). To ensure that the
manufacturer has a sufficient production capacity in the retailer demand
fulfillment process, it is assumed that E[γi] < 1− D

P .
(6) The sorting process for the lot quantity is completed (100%) at the retailer’s

location before the start of each cycle time T . In this case, the sorting time
is counted as part of the delivery lead time. All products with imperfect
quality will be returned to the manufacturer through the return process at
the time of the next lot shipment.

(7) It is assumed that there are no additional shipping costs for this return
process. The manufacturer provides compensation of ω for each product
with the imperfect quality found. Furthermore, the manufacturer will resell
these products with imperfect quality through the secondary market.

(8) Completely back ordered when a product shortage occurs (shortages back-
order).

(9) Carbon emissions are assumed to be generated by the production loading
and unloading of equipment and vehicles in the delivery process.

(10) The emission costs caused by loading and unloading equipment are borne
by the manufacturer, while the emission costs generated by vehicles are
charged to the retailer. The type of equipment and vehicles is determined
by the manufacturer. The manufacturer and retailer agree to minimize
emission costs by using equipment and vehicles with low emission values.

(11) The manufacturer and all retailers agree to use the principles of synchro-
nization and integration for determining the optimum values of decision
variables.

Next, the inventory model for imperfect quality products will be explained,
considering shortage back ordering and greenhouse gas emissions. The intended
model involves formulating objective functions for each retailer and manufacturer.
The objective function for each retailer consists of several components, namely
ordering cost, transportation cost, sorting cost, holding cost, reorder cost, and
carbon emission cost. The determination of the holding cost components requires
an analysis of the inventory level managed by the retailers. The inventory level of
retailer i is depicted in the following diagram.

Based on the inventory level depicted in Figure 1, the holding cost component
in the cost function for each retailer can be expressed as:

hb
i =

1

2

(
(qi − γi −Bi)

2

D
+

q2i γi(1− γi)

D

)
.

Simultaneously, the reorder cost component is defined as 1
2bin

Bi

D . The emission
handling cost is assigned to each retailer i. The specific handling equipment and
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Figure 1. Retailer’s Inventory Level

vehicles are determined by the manufacturer. The emission handling cost compo-
nent is calculated as the sum of emission costs from handling equipment and trans-
portation equipment, formulated as JiEG1Cjqi + ClEG2mppqi + CulEG3mppqi.
Consequently, the total cost function for retailer i is denoted as Γi(·) : R2 → R
with

Γi(qi, n) = Cb
i + nFi + sinqi + hb

i

(
1

2

(
(qi − γi −Bi)

2

D
+

q2i γi(1− γi)

D

))
+

1

2
bin

Bi

D
+ Ji (EG)1 Cjqi + Cl (EG)2 mppqi + Cul (EG)3 mppqi.(1)

Next, the manufacturing objective function, which is the total cost function, will
be explained. The manufacturing objective function consists of several compo-
nents, namely setup cost and compensation cost for imperfect quality products
found. Based on Figure 1 and on the work of Lin [1] and Hsu and Hsu [4], the
inventory holding cost for the manufacturer is formulated as the product of the
holding cost per unit of product multiplied by the cumulative difference between
the manufacturing inventory level and the cumulative inventory level of retailer

i. Holding cost per cycle is formulated by hP

(
nq2

P − n2q2

2P + n(n−1)q2(1−γ)
2D

)
. All

parties in the inventory system are deemed in agreement to use the integration
scheme. Thus, the total cost function of the entire supply chain system in each
cycle is obtained from the summation of the manufacturing objective function and

all retailers J(q, n,B) = Λi(qi, n) +
∑k

i=1 Γi(qi, n) as follows.
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J(q, n,B) = Cp + ωnqγ + hP

(
nq2

P
− n2q2

2P
+

n(n− 1)q2(1− γ)

2D

)
+

k∑
i=1

(
Cb

i + nFi + hb
in

(
1

2

(
(qi − γi −Bi)

2

D

)))

+

k∑
i=1

(
γi(1− γi)(Di)

2q2

D
+

binBi

2D

)

+

k∑
i=1

(JiEG1Cjqi + ClEG2mppqi + CulEG3mppqi) , (2)

where B = (B1, ..., Bn)
T , q =

∑n
i=1 qi, and γ = (γ1, . . . , γn)

T . Since every party in
the inventory system also agrees to use the synchronization principle, the relation-
ship qi =

Diq
D hold. Thus, Equation (2) is equivalent to the following equation.

J(q, n,B) = Cp + ωnqγ + hP

(
nq2

P
− n2q2

2P
+

n(n− 1)q2(1− γ)

2D

)
+

1

D

k∑
i=1

(
DCb

i +DnFi + hb
in

(
1

2

(
D2

i q
2

D2
− γ2

i − 2γiB
2
i

)))

+
1

D

k∑
i=1

hb
in

(
γi(1− γi)(Di)

2q2

D2

)
+

k∑
i=1

(
binBi

2D

)

+
q

D

k∑
i=1

((JiEG1Cj + ClEG2mpp + CulEG3mpp)Di) . (3)

Due to the length of the product replenishment cycle (Ttot = nq
(1−γ)/D) ), then we

obtain E[Ttot] = nq(1−E[γ])/D. Using the renewal-reward theorem, the expected

average total annual cost per unit of time is formulated by EJ(q, n,B) = E[J(q,n,B)]
E[Ttot]

.

Then, we have the expected form of Equation (3) like follows.
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J(q, n,B) =
E[J(q, n,B)]

E[Ttot]
=

(CpD)

nq(1− E[γ])
+

ωE[γ]D

(1− E[γ])

+

k∑
i=1

(
(DCb

i )

nq(1− E[γ])
+

(DFi)

q(1− E[γ])

)

+

k∑
i=1

(
hb
i

q(1− E[γ])

(
1

2

(
(D2

i q
2)

D2
− E[γ2

i ]− 2E[γi]B
2
i

)))

+

k∑
i=1

(
(E[γi]− E[γ2

i ])(Di)
2q2

D2

)
+ hP

(
qD

P (1− E[γ])
− qD

2P (1− E[γ])
+

n(n− 1)q

2

)
+

1

2q

k∑
i=1

(
biBi

(1− E[γ])

)

+
1

n(1− E[γ])

k∑
i=1

((JiEG1Cj + ClEG2mpp + CulEG3mpp)Di) .(4)

The determination of the optimum value for each decision variable uses the
classical optimization concept, namely the first partial derivative criteria. The first
partial derivative process is applied to the combined total cost function J(q, n,B).
Due to the intricate nature of the equations involved, manually calculating the par-
tial derivative formulas for the total cost function concerning each decision variable
be exceedingly challenging. As a solution, we will utilize Python programming to
efficiently derive the partial derivatives of the total cost function. These derivatives
are essential for optimizing the decision variables, such as the order quantity (q),
number of shipments (n), and the maximum quantity of reorders per unit at each
retailer (Bi). By integrating the required integration scheme and synchronization
principles, we aim to gain valuable insights into the cost optimization for the entire
supply chain cycle, considering the individual maximum reorder quantities (Bi),
and the overall number of shipments (n). Thus, we have obtained the partial de-
rivative formulas for each decision variable as follows: First, the partial derivative
concerning the order quantity (q) will encompass a multitude of complexities involv-
ing the entire manufacturing objective function and the reorder quantities at each
retailer (Bi), Second, the partial derivative concerning the number of shipments
(n) will involve product-specific parameters such as set-up costs (Cp), annual de-
mand (D), and others. Third, the partial derivative for the total maximum reorder
quantity (B) will take into account the individual maximum reorder quantities at
each retailer (Bi), and impact the overall supply chain cost. By utilizing Python
programming through Google Colabs, we can efficiently determine these partial de-
rivative formulas to gain valuable insights into the cost optimization for the entire
supply chain cycle. Due to the use of an algorithmic approach to determining the
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partial derivative formulas, the expected average total annual cost function con-
cerning each decision variable, a specific index value i must be taken. In this case,
an attempt is made for k = 3, which means simulations are conducted for a total of
3 retailers. It is also assumed that all parties have the same value of γi and denoted
by γ. Here is the formula for each partial derivative for k = 3.

∂J(q, n,B)

∂q
=

2B + 2CpD

q3(1− E[γ])
+

(Cb
1 + Cb

2 + Cb
3)D + F1 + F2 + F3

nq2(1− E[γ])

− h1b/D
2(2D2

1q(−E[γ2] + E[γ] + (D2
1q)/D

2))

q(1− E[γ])

+
h1b/D

2(−B2
1E[γ]− 0.5E[γ2] +D2

1q
2(−E[γ2] + E[γ] + 0.5D2

1q
2))

q2(1− E[γ])

+
h2b/D

2(2D2
2q(−E[γ]2 + E[γ] +D2

2q))

q(1− E[γ])

+
h2b/D

2(−B2
2E[γ]− 0.5E[γ2] +D2

2q
2(−E[γ2] + E[γ]) + 0.5D2

2q
2)

q2(1− E[γ])

+
h3b/D

2(2D2
3q(−E[γ2] + E[γ] +D2

3q))

q(1− E[γ])

+
h3b/D

2(−B2
3E[γ]− 0.5E[γ2] +D2

3q
2(−E[γ2] + E[γ] + 0.5D2

3q
2))

q2(1− E[γ])
(5)

∂J(q, n,B)

∂n
=

Cb
1D

nq2(1− E[γ])
+

Cb
2D

n2q(1− E[γ])
+

Cb
3D

n2q(1− E[γ])

+
CpD

n2q2(1− E[γ])
+ n− 1

2
= 0. (6)

∂J(q, n,B)

∂B
= − 1

q2(1− E[γ])
= 0. (7)

An analytical solution for the complex set of three partial derivative equations
(related to q, n, and B) is difficult or even infeasible due to the intricacy of the
non-linear cost function and constraints involved. Therefore, a numerical approach
is required, which efficiently seeks a numerical solution approximating the opti-
mum. We assume that γ follows uniform distribution in the interval [0,1]. For
implementing these numerical methods, Python with the SciPy library is an ideal
choice, providing flexibility and ease in solving this optimization problem. In the
first simulation, we attempted to use the Newton-Raphson method by utilizing the
sympy package. However, this method alone was not sufficient to obtain the op-
timum solution. Therefore, we turned to a more robust tool in the SciPy library,
specifically optimize.fsolve function (import as scipy.optimize), and combined it
with sympy.

For the subsequent data analysis, we made modifications to our initial codes.
We included a section that prompts the user to input the number of sets of initial
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guesses (q, n, and B), followed by asking for the initial guesses for each set. The
solutions are then stored in a list and presented in a tabular format using pandas
library. This enhancement allows users to input multiple sets of initial guesses
and observe the resulting solutions in a structured manner. The first simulation
(single data) is conducted using Python based on Google Colab, while the second
simulation (multiple data case) is executed using Spyder (Python 3.8). We use five
packages in Python that are sympy, scipy.optimize, matplotlib.pyplot, and random.
Package matplotlib.pyplot is used to code a graphical representation of the optimal
solution. Because we will use some initial guess values in the interval, random
packages are needed. Before presenting the numerical simulations and analyzing
the numerical results, here is the procedure for determining the solutions as the
basis for creating the algorithm based on the Newton-Raphson method.

Procedure for determining the optimum solution:

(1) Input the given parameter values such as Cb
1, C

b
2, C

b
2, B1, B2, B3, D1, D2,

D3, F1, F2, F3, Cp, h
b
1, h

b
2, and hb

3.
(2) Define the variables q, n, and B, and the expected values E[γ]and E[γ2]

according to the desired distribution. In this research, it is assumed that γ
follows the uniform distribution.

(3) Set initial guesses for q and n (initial guess− q and initial guess− n)
(4) Set an initial guess for B (initial guess−B) according to the requirement.
(5) Define the cost function that calculates the vector of partial derivatives

with respect to q, n, and B.
(6) Use the numerical method optimize.fsolve to find the numerical solution of

the formed equations.
(7) Display the numerical solution obtained for q, n, and B.

According to Equations (5), Equation (6), and Equation (7), we take the
following value of some cost parameters (in 1000 IDR):

Table 2.3. Parameter values

i Cb
i Fi hb

i

1 50 200 2
2 55 220 3
3 60 250 2

Then, the other parameters are: B1 = 20, B2 = 15, B3 = 10, D1 = 150, D2 =
160, D3 = 170(in unit) and Cp = 400 (in 1000 IDR). The Newton–Raphson method
is a numerical method that requires guessing the initial value so that iterations in
the method can be executed. We simulate twenty pairs of initial guesses (q, n,B)
randomly in certain intervals. For the first simulation, initial guess values of q, n,B
will be used each of which is taken randomly in the intervals [80,120], [1,10], and
[20, 40].

In using the formed algorithm, here is an example of taking one of the optimal
values for twenty random initial value selections within a specified interval.
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Table 2.4. Simulation Example for Optimum Value

i q∗ n∗ B∗

1 301.829651 6.949209 6.526886e+07
2 175.433465 8.613923 2.017227e+06
3 173.493334 8.684346 1.151145e+07
4 155.598831 8.851715 6.960295e+06
5 107.736366 10.376168 2.485684e+06
6 486.936392 5.940064 2.803741e+08
7 467.661685 6.092256 2.458636e+08
8 163.987395 8.713638 9.080201e+06
9 989.647099 4.769870 2.419257e+09
10 238.388030 7.636687 2.884494e+07
11 490.153779 5.894341 2.909484e+08
12 1030.297472 4.666678 2.711623e+09
13 169.040810 9.233033 1.027647e+07
14 477.901490 6.098078 2.620549e+08
15 1019.418393 4.709437 2.656991e+09
16 243.466912 7.503973 3.073054e+07
17 347.824387 -5.191177 1.113897e+08
18 191.264496 8.264229 1.509079e+07
19 479.996205 6.018554 2.627387e+08
20 206.213966 8.047127 1.913231e+07

Using mpl toolkits.mplot3d package, the results in Table 2.4 can be presented in the
following graphic.

Figure 2. Relation between q, n, and B

By adding code to determine the best solution, the Python program selects
q∗ = 108, n∗ = 108, B∗ = 3. When we repeat this process multiple times, the
program will iterate with any 20 different pairs of initial values. However, in general,
it will produce the best approximate optimum solution for q∗ within the range of 98
to 110, the best approximate optimum value for n∗ within the range of 9 to 11, and
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the range of B∗ values within 1 to 3. Higher values of q will lead to lower values of
n; however, collectively, the maximum quantity of reorder points remains relatively
the same for several approaches with the same q value. In the optimality analysis,
emission costs do not influence the optimality results, as the simulation does not
allow for the possibility of q and n values being zero. A supply chain system that
meets the criteria in this model can function well, meaning there are products
available, and there is a shipping process in place. Consequently, carbon emission
costs will always be present. The program’s suggested best values do not have to
be followed; manufacturers and retailers can choose alternative approach results
for optimal values. Additionally, the initial guessed values can also be modified
according to the inventory system conditions, which may yield different optimal
value approaches.

3. CONCLUDING REMARKS

In this paper we have been able to model an inventory model with a shortage
back ordering policy, the existence of products with imperfect quality, and the cost
of carbon emissions. The more products need to be shipped to meet retailers’
demands, the higher the volume of product shipments will increase. If imperfect
quality products become more prevalent, more products will need to be resent to
meet retailers’ demands. Furthermore, as the number of shipments increases, both
inventory costs and carbon emission expenses will rise. Therefore, in this case,
quality control is necessary to reduce the presence of imperfect quality products.

Due to the complexity of the model, the optimization analysis uses a numer-
ical method approach, namely the Newton-Raphson method by utilizing packages
in Python. For further research, it is possible to improve the approach by using
more complex and accurate algorithms such as genetic algorithms.

Acknowledgement. The authors would like to thank the anonymous editors and
reviewers, especially the editor-in-chief, for their valuable comments and sugges-
tions, which improved the quality of this article.
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