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Abstract. In this paper, we introduces Narayana sequence in two parameters,

namely, (k, t)-Narayana sequence, which is generalization of classical Narayana se-

quence and provide some identities and matrix expressions. Further, we find rela-

tions between (k, t)-Narayana numbers and determinants and permanents of some

Hessenberg matrices. We study recurrence relations and the sum of the first n terms

of this sequence. We obtain some properties from matrices. Additionally, we define

(k, t)−Narayana sequence for negative subscripts and derive some relations.
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1. INTRODUCTION

Narayana sequence was introduced in the 14th century by the Indian mathe-
matician Narayana Pandita. He defined this sequence as the solution to the problem
of herd of cows and calves:“Every year a cow produces one calf. When its fourth
year begins, at the beginning of each year each calf produces one calf. The problem
is How many cows are there together after, for example, 20 years” [1].
This problem is solved in a similar manner as Fibonacci solved Rabbit problem [2].
As a solution to this problem, we get Narayana numbers, which are defined as

Nn = Nn−1 +Nn−3 for all n ≥ 3

with the initial conditions

N0 = 0, N1 = 1, N2 = 1.

Some of the terms are:

0, 1, 1, 1, 2, 3, 4, 6, 9, 13, 19, ...
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Binet’s formula [3] for Narayana sequence is

Nn =
α̃n+1

(α̃− β̃)(α̃− γ̃)
+

β̃n+1

(β̃ − γ̃)(β̃ − α̃)
+

γ̃n+1

(γ̃ − α̃)(γ̃ − β̃)
(1)

where α̃, β̃ and γ̃ are the roots of char. equation x3 − x2 − 1 = 0.

The Narayana sequence is defined by a third order recurrence relation, whereas
Fibonacci and Lucas sequences are defined by second order recurrence relations
respectively as follows:

Fn = Fn−1 + Fn−2 for all n ≥ 2

with the initial conditions

F0 = 0, F1 = 1

and

Ln = Ln−1 + Ln−2 for all n ≥ 2

with the initial conditions

L0 = 2, L1 = 1.

Fibonacci and Lucas numbers have applications [4, 5] in many fields. Narayana
numbers are also used in fields [6] such as coding theory, cryptography, and commu-
nication systems. In [7] Kirthi et al. gave coding algorithms named Narayana uni-
versal codes using Narayana numbers. In [8] Das et al. gave second order Narayana
universal codes which is extension of codes given by Kirthi. They strengthen the
security in sending information due to the formation of straight lines.
Jose et al. [9] defined k-Narayana sequence as

bk,n = kbk,n−1 + bk,n−3 for all n ≥ 3

with the initial conditions

bk,0 = 0, bk,1 = 1, bk,2 = k.

The authors [9] studied recurrence relations, Binet’s formula and some other prop-
erties of this sequence. Binet’s formula is

bk,n =
α̃n+1
k

(α̃k − β̃k)(α̃k − γ̃k)
+

β̃n+1
k

(β̃k − α̃k)(β̃k − γ̃k)
+

γ̃n+1
k

(γ̃k − α̃k)(γ̃k − β̃k)
(2)

where α̃k, β̃k and γ̃k are the roots of the equation z3 − kz2 − 1 = 0.
They related this sequence to determinants of Hessenberg matrices.

Goy [10] studied Toeplitz-Hessenberg determinants with entries for Fibonacci-Narayana
numbers or Narayana numbers. He established connections between determinants
of Toeplitz-Hessenberg matrices with entries of Fibonacci-Narayana numbers and
Fibonacci, Tribonacci numbers.
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In [13, 14, 15, 16] Mishra and Bala studied Fibonacci sequence in circulant matrices,
in Diophantine equations and matrix form of classical Narayana sequence.
The present paper is organized in a total of 7 sections.

2. (k, t)−Narayana sequence

In this section, we introduces a generalization of Narayana sequence in two
parameters, i.e. (k, t)− Narayana sequence. Here k and t are non zero real num-
bers. We find sum of first n terms of Narayana and k-Narayana sequence and also
sum of n terms having subscripts of the form 3m, 3m+ 1, 3m+ 2.

Definition 2.1. ((k, t)−Narayana Sequence): (k, t)-Narayana sequence is de-
fined as

Nn+1(k, t) = kNn(k, t) + tNn−2(k, t) for all n ≥ 2 (3)

with the initial conditions

N0(k, t) = 0, N1(k, t) = 1, N2(k, t) = k, (4)

where k and t are non zero real numbers.

Some of the initial terms of the sequence are given as

N0(k, t) = 0, N1(k, t) = 1, N2(k, t) = k, N3(k, t) = k2, N4(k, t) = k3 + t,

N5(k, t) = k4 + 2kt, N6(k, t) = k5 + 3k2t, N7(k, t) = k6 + 4k3t+ t2, ...

In particular, if we take t = 1, then (k, t)-Narayana sequence becomes k-Narayana
sequence

{bk,n}∞n=0 =
{

0, 1, k, k2, k3 + 1, k4 + 2k, k5 + 3k2, k6 + 4k3 + 1, ...
}
.

If we take k = 1, t = 1, we get classical Narayana sequence

{Nn}∞n=0 = {0, 1, 1, 1, 2, 3, 4, 6, 9, 13, 19, 28, ...} .

Theorem 2.2. Sum of n terms of Narayana sequence i.e.

N1 +N2 +N3 + ...+Nn = Nn+3 − 1.

Proof. Nn+1 = Nn +Nn−2 for all n ≥ 2
Nn = Nn+1 −Nn−2
By substituting n = 2, 3, 4, ...

N2 = N3 −N0

N3 = N4 −N1

N4 = N5 −N2

N5 = N6 −N3
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...

Nn−3 = Nn−2 −Nn−5
Nn−2 = Nn−1 −Nn−4
Nn−1 = Nn −Nn−3
Nn = Nn+1 −Nn−2

Adding all the above inequalities, we get

N2 +N3 + . . .+Nn = Nn+3 − 2

N1 +N2 +N3 + . . .+Nn = Nn+3 − 1

�

Theorem 2.3. Prove the following:

(i) N3 +N6 +N9 + ...+N3n = N3n+1 −N1

(ii) N4 +N7 +N10 + ...+N3n+1 = N3n+2 −N2

(iii) N5 +N8 +N11 + ...+N3n+2 = N3n+3 −N3.

Proof. (i) By using equation (1),

N3 +N6 +N9 + . . .+N3n =
1

(α̃− β̃)(α̃− γ̃)
(α̃4 + α̃7 + α̃10 + . . .+ α̃3n+1)

+
1

(β̃ − α̃)(β̃ − γ̃)
(β̃4 + β̃7 + β̃10 + . . .+ β̃3n+1)

+
1

(γ̃ − α̃)(γ̃ − β̃)
(γ̃4 + γ̃7 + γ̃10 + . . .+ γ̃3n+1)

=
α̃4(α̃3n − 1)

(α̃− β̃)(α̃− γ̃)(α̃3 − 1)
+

β̃4(β̃3n − 1)

(β̃ − γ̃)(β̃ − α̃)(β̃3 − 1)
+

β̃4(β̃3n − 1)

(γ̃ − α̃)(γ̃ − β̃)

=
1

(α̃− β̃)(α̃− γ̃)

(
α̃3n+2 − α̃2

)
+

1

(β̃ − α̃)(β̃ − γ̃)

(
β̃3n+2 − β̃2

)
+

1

(γ̃ − α̃)(γ̃ − β̃)

(
γ̃3n+2 − γ̃2

)
(
α̃, β̃, γ̃ are the roots of equation x3 − x2 − 1 = 0

so α̃3 − 1 = α̃2, β̃3 − 1 = β̃2, γ̃3 − 1 = γ̃2
)

= N3n+1 −N1.

Similarly other two equalities can be proved. �

Theorem 2.4. Sum of n terms of k-Narayana sequence i.e.

bk,1+bk,2+bk,3+bk,4+...+bk,n =
1

k
(bk,n−1 + bk,n + bk,n+1 − bk,0 − bk,1 − bk,2)+bk,1.
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Proof. Since bk,n = kbk,n−1 + bk,n−3 for all n ≥ 3,

so bk,n−1 =
1

k
(bk,n − bk,n−3) for all n ≥ 3

By substituting n = 3, 4, 5, ...

bk,2 =
1

k
(bk,3 − bk,0)

bk,3 =
1

k
(bk,4 − bk,1)

bk,4 =
1

k
(bk,5 − bk,2)

bk,5 =
1

k
(bk,6 − bk,3)

bk,6 =
1

k
(bk,7 − bk,4)

...

bk,n−3 =
1

k
(bk,n−2 − bk,n−5)

bk,n−2 =
1

k
(bk,n−1 − bk,n−4)

bk,n−1 =
1

k
(bk,n − bk,n−3)

bk,n =
1

k
(bk,n+1 − bk,n−2)

Adding all above equalities, we get

bk,2 + bk,3 + bk,4 + ...+ bk,n =
1

k
(bk,n−1 + bk,n + bk,n+1 − bk,0 − bk,1 − bk,2)

bk,1 + bk,2 + bk,3 + bk,4 + ...+ bk,n =
1

k
(bk,n−1 + bk,n + bk,n+1 − bk,0 − bk,1 − bk,2) + bk,1

�

Theorem 2.5. Prove the following:

(i) bk,4 + bk,7 + bk,10 + ...+ bk,3n+1 =
1

k
(bk,3n+2 − bk,2)

(ii) bk,5 + bk,8 + bk,11 + ...+ bk,3n+2 =
1

k
(bk,3n+3 − bk,3)

(iii) bk,3 + bk,6 + bk,9 + ...+ bk,3n =
1

k
(bk,3n+1 − bk,1) .

Proof. (i) By using equation (2),

bk,4 + bk,7 + bk,10 + . . .+ bk,3n+1 =
α̃5 + α̃8 + α̃11 + . . .+ α̃3n+2

(α̃− β̃)(α̃− γ̃)
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+
β̃5 + β̃8 + β̃11 + . . .+ β̃3n+2

(β̃ − α̃)(β̃ − γ̃)
+
γ̃5 + γ̃8 + γ̃11 + . . .+ γ̃3n+2

(γ̃ − α̃)(γ̃ − β̃)

=
α̃5(α̃3n − 1)

(α̃− β̃)(α̃− γ̃)(α̃3 − 1)
+

β̃5(β̃3n − 1)

(β̃ − α̃)(β̃ − γ̃)(β̃3 − 1)

+
γ̃5(γ̃3n − 1)

(γ̃ − α̃)(γ̃ − β̃)(γ̃3 − 1)

=
α̃5(α̃3n − 1)

(α̃− β̃)(α̃− γ̃)kα̃2
+

β̃5(β̃3n − 1)

(β̃ − α̃)(β̃ − γ̃)kβ̃2
+

γ̃5(γ̃3n − 1)

(γ̃ − α̃)(γ̃ − β̃)kγ̃2(
α̃, β̃, γ̃ are the roots of equation x3 − kx2 − 1 = 0

so α̃3 − 1 = kα̃2, β̃3 − 1 = kβ̃2, γ̃3 − 1 = kγ̃2
)

=
1

k

{
α̃3n+3 − α̃3

(α̃− β̃)(α̃− γ̃)
+

β̃3n+3 − β̃3

(β̃ − γ̃)(β̃ − α̃)
+

γ̃3n+3 − γ̃3

(γ̃ − α̃)(γ̃ − β̃)

}

=
1

k
(bk,3n+2 − bk,2)

Similarly other two equalities can be proved. �

3. Matrix representation

This section gives matrix expression of (k, t)-Narayana sequence and some
identities, characteristic equation and Binet’s formula.

(k, t)− Narayana sequence can be expressed in matrix form as

Nn+1(k, t)
Nn(k, t)
Nn−1(k, t)

 =

s 0 t
1 0 0
0 1 0

 Nn(k, t)
Nn−1(k, t)
Nn−2(k, t)


Nn+1(k, t)

Nn(k, t)
Nn−1(k, t)

 = P

 Nn(k, t)
Nn−1(k, t)
Nn−2(k, t)


where P =

s 0 t
1 0 0
0 1 0

 and detP = t.

By successive substitutions, we can obtainNn+1(k, t)
Nn(k, t)
Nn−1(k, t)

 = Pn−1

N2(k, t)
N1(k, t)
N0(k, t)
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Theorem 3.1.

Pn =

Nn+1(k, t) tNn−1(k, t) tNn(k, t)
Nn(k, t) tNn−2(k, t) tNn−1(k, t)
Nn−1(k, t) tNn−3(k, t) tNn−2(k, t)

 for all n ≥ 3. (5)

Proof. The proof can be done by induction on n

For n=3, we will prove that P 3 =

N4(k, t) tN2(k, t) tN3(k, t)
N3(k, t) tN1(k, t) tN2(k, t)
N2(k, t) tN0(k, t) tN1(k, t)


Since P =

k 0 t
1 0 0
0 1 0


So P 3 =

k3 + t kt k2t
k2 t kt
k 0 t

 =

N4(k, t) tN2(k, t) tN3(k, t)
N3(k, t) tN1(k, t) tN2(k, t)
N2(k, t) tN0(k, t) tN1(k, t)


Now suppose equation (5) holds for n = k

i.e. P k =

Nk+1(k, t) tNk−1(k, t) tNk(k, t)
Nk(k, t) tNk−2(k, t) tNk−1(k, t)
Nk−1(k, t) tNk−3(k, t) tNk−2(k, t)


We will prove for n = k + 1

i.e. P k+1 =

Nk+2(k, t) tNk(k, t) tNk+1(k, t)
Nk+1(k, t) tNk−1(k, t) tNk(k, t)
Nk(k, t) tNk−2(k, t) tNk−1(k, t)


Now

P k+1 = P kP

=

Nk+1(k, t) tNk−1(k, t) tNk(k, t)
Nk(k, t) tNk−2(k, t) tNk−1(k, t)
Nk−1(k, t) tNk−3(k, t) tNk−2(k, t)

k 0 t
1 0 0
0 1 0


=

kNk+1(k, t) + tNk−1(k, t) tNk(k, t) tNk+1(k, t)
kNk(k, t) + tNk−2(k, t) tNk−1(k, t) tNk(k, t)
kNk−1(k, t) + tNk−3(k, t) tNk−2(k, t) tNk−1(k, t)


=

Nk+2(k, t) tNk(k, t) tNk+1(k, t)
Nk+1(k, t) tNk−1(k, t) tNk(k, t)
Nk(k, t) tNk−2(k, t) tNk−1(k, t)


So by induction equation (5) holds for all n ≥ 3. �

Theorem 3.2. N3
n−1(k, t)+Nn+1(k, t)N2

n−2(k, t)−Nn+1(k, t)Nn−1(k, t)Nn−3(k, t)
+N2

n(k, t)Nn−3(k, t)− 2Nn(k, t)Nn−1(k, t)Nn−2(k, t) = tn−2.
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Proof. From equation (5), we get

Pn =

Nn+1(k, t) tNn−1(k, t) tNn(k, t)
Nn(k, t) tNn−2(k, t) tNn−1(k, t)
Nn−1(k, t) tNn−3(k, t) tNn−2(k, t)

 for all n ≥ 3 (6)

Now taking determinant on both sides,

tn = Nn+1(k, t)(t2N2
n−2(k, t)− t2Nn−1(k, t)Nn−3(k, t)− tNn−1(tNnNn−2(k, t)

− tN2
n−1(k, t)) + tNn(k, t)(tNn(k, t)Nn−3(k, t)− tNn−1(k, t)Nn−2(k, t))

tn = t2(N3
n−1(k, t) +Nn+1(k, t)N2

n−2(k, t)−Nn+1(k, t)Nn−1(k, t)Nn−3(k, t)

+N2
n(k, t)Nn−3(k, t)− 2Nn(k, t)Nn−1(k, t)Nn−2(k, t))

tn−2 = N3
n−1(k, t) +Nn+1(k, t)N2

n−2(k, t)−Nn+1(k, t)Nn−1(k, t)Nn−3(k, t)

+N2
n(k, t)Nn−3(k, t)− 2Nn(k, t)Nn−1(k, t)Nn−2(k, t)

�

Theorem 3.3.

Nn(k, t) = Nm+1(k, t)Nn−m(k, t)+tNm−1(k, t)Nn−m−1(k, t)+tNm(k, t)Nn−m−2(k, t)

Nn(k, t) = Nm(k, t)Nn−m+1(k, t)+tNm−2(k, t)Nn−m(k, t)+tNm−1(k, t)Nn−m−1(k, t).

Proof. Pn = PmPn−mNn+1(k, t) tNn−1(k, t) tNn(k, t)
Nn(k, t) tNn−2(k, t) tNn−1(k, t)
Nn−1(k, t) tNn−3(k, t) tNn−2(k, t)

 =(
Nm+1(k, t) tNm−1(k, t) tNm(k, t)

Nm(k, t) tNm−2(k, t) tNm−1(k, t)
Nm−1(k, t) tNm−3(k, t) tNm−2(k, t)

)(
Nn−m+1(k, t) tNn−m−1(k, t) tNn−m(k, t)

Nn−m(k, t) tNn−m−2(k, t) tNn−m−1(k, t)
Nn−m−1(k, t) tNn−m−3(k, t) tNn−m−2(k, t)

)
By comparing the (1, 3)th and (2, 1)th elements, we obtain
Nn(k, t) = Nm+1(k, t)Nn−m(k, t) + tNm−1(k, t)Nn−m−1(k, t) + tNm(k, t)Nn−m−2(k, t)
Nn(k, t) = Nm(k, t)Nn−m+1(k, t) + tNm−2(k, t)Nn−m(k, t) + tNm−1(k, t)Nn−m−1(k, t)

�

Characteristic equation:
Characteristic equation of the sequence is given by z3 − kz2 − t = 0.

Theorem 3.4. (Binet’s formula):

Nn(k, t) =
α̃n+1

(α̃− β̃)(α̃− γ̃)
+

β̃n+1

(β̃ − γ̃)(β̃ − α̃)
+

γ̃n+1

(γ̃ − α̃)(γ̃ − β̃)

where α̃, β̃ and γ̃ are the roots of characteristic equation x3 − kx2 − t.

Proof. Take

Nn = Aα̃n +Bβ̃n + Cγ̃n (7)
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where α̃, β̃ and γ̃ are the roots of Characteristic equation x3 − kx2 − t.
Now by using initial conditions from equation (4) and operations of linear algebra,
the values of A, B and C can be found as

A =
α̃

(α̃− β̃)(α̃− γ̃)

B =
β̃

(β̃ − γ̃)(β̃ − α̃)

C =
γ̃

(γ̃ − α̃)(γ̃ − β̃)

Now from Equation (7),

we get Nn =
α̃n+1

(α̃− β̃)(α̃− γ̃)
+

β̃n+1

(β̃ − γ̃)(β̃ − α̃)
+

γ̃n+1

(γ̃ − α̃)(γ̃ − β̃)

where α̃, β̃ and γ̃ are the roots of Characteristic equation x3 − kx2 − t

α̃ =
1

3

k +
3

√
2k3 + 27t+ 3

√
81t2 + 12k3t

2
+ k2 3

√
2

2k3 + 27t+ 3
√
81t2 + 12k3t



β̃ =
1

3

k + ω
3

√
2k3 + 27t+ 3

√
81t2 + 12k3t

2
+ ω2k2 3

√
2

2k3 + 27t+ 3
√
81t2 + 12k3t



γ̃ =
1

3

k + ω2 3

√
2k3 + 27t+ 3

√
81t2 + 12k3t

2
+ ωk2 3

√
2

2k3 + 27t+ 3
√
81t2 + 12k3t


where ω is cube root of unity. �

Alternatively we can prove Binet’s formula with diagonalization of generating
matrix.

Proof. Generating matrix for (k, t)−Narayana sequence is P =

k 0 t
1 0 0
0 1 0


Eigen values of P are given by the characteristic equation det(P − xI) = 0 i.e.

det

k − x o t
1 −x 0
0 1 −x

 = 0

x3 − kx2 − t = 0

Let its roots be α̃, β̃, and γ̃.

Now eigen vector
(
u v w

)T
corresponding to eigenvalue α̃ is given by solution

of
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1 −α̃ 0
0 1 −α̃

uv
w

 =

0
0
0


That is

(k − α̃)u+ tw = 0

u− α̃v = 0

v − α̃w = 0

Take w = c. Then we get v = cα̃, u = cα̃2.
In particular, if we consider c = 1, then w = 1, v = α̃, u = α̃2.

So eigen vectors corresponding to eigen values are

α̃2

α̃
1

 ,

β̃2

β̃
1

 ,

γ̃2γ̃
1


Let Q =

α̃2 β̃2 γ̃2

α̃ β̃ γ̃
1 1 1

 and D =

α̃ 0 0

0 β̃ 0
0 0 γ̃


Q−1 =

1

(α̃− β̃)(α̃− γ̃)(β̃ − γ̃)

β̃ − γ̃ γ̃2 − β̃2 β̃γ̃(β̃ − γ̃)
γ̃ − α̃ α̃2 − γ̃2 α̃γ̃(γ̃ − α̃)

α̃− β̃ α̃2 − β̃2 α̃β̃(α̃− β̃)


P = QDQ−1 =⇒ Pn = QDnQ−1

Pn =
1

(α̃− β̃)(α̃− γ̃)(β̃ − γ̃)

(
α̃2 β̃2 γ̃2

α̃ β̃ γ̃

1 1 1

)(
α̃ 0 0

0 β̃ 0

0 0 γ̃

)(
β̃ − γ̃ γ̃2 − β̃2 β̃γ̃(β̃ − γ̃)

γ̃ − α̃ α̃2 − γ̃2 α̃γ̃(γ̃ − α̃)

α̃− β̃ α̃2 − β̃2 α̃β̃(α̃− β̃)

)
By using theorem equation (6),Nn+1(k, t) tNn−1(k, t) tNn(k, t)

Nn(k, t) tNn−2(k, t) tNn−1(k, t)
Nn−1(k, t) tNn−3(k, t) tNn−2(k, t)


=

1

(α̃− β̃)(α̃− γ̃)(β̃ − γ̃)

α̃n+2 β̃n+2 γ̃n+2

α̃n+1 β̃n+1 γ̃n+1

α̃n β̃n γ̃n

β̃ − γ̃ γ̃2 − β̃2 β̃γ̃(β̃ − γ̃)
γ̃ − α̃ α̃2 − γ̃2 α̃γ̃(γ̃ − α̃)

α̃− β̃ α̃2 − β̃2 α̃β̃(α̃− β̃)


Comapring (2, 1)th element from both sides, we get

Nn(k, t) =
α̃n+1

(α̃− β̃)(α̃− γ̃)
+

β̃n+1

(β̃ − γ̃)(β̃ − α̃)
+

γ̃n+1

(γ̃ − α̃)(γ̃ − β̃)
�

4. Hessenberg matrices and (k, t)−Narayana numbers

The notions of Hessenberg matrix, permanent of a matrix and contraction
of matrix are introduced in this section. Then, these notions gives elegant rela-
tion between the nth (k, t)-Narayana number and permanent of a Hessenberg type
matrix.

Herein, we introduce some of important definitions as Hessenberg matrix,
Permanent of a matrix and Contraction of matrix [11, 12].
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Definition 4.1. (Hessenberg matrix): Define matrix A = [ãij ] of order n, where
ãij = 0 when i− j > 1 or j − i > 1, then A is known as Hessenberg matrix.

i.e. A =



ã1,1 ã1,2 ã1,3 . . . ã1,n−1 ã1,n
ã2,1 ã2,2 ã2,3 . . . ã2,n−1 ã2,n

ã3,2 ã3,3 . . .
... ã3,n

ã4,3 . . .
...

...
. . .

...
...

0 ãn,n−1 ãn,n


Hessenberg matrices of order n are defined as

A(k, t) =



k2 t kt 0
1 k 0 t

1 k 0 t
. . .

. . .
. . .

. . .

1 k 0 t
1 k 0

0 1 k


n×n

(8)

B(k, t) =



k 0 t 0
−1 k 0 t

−1 k 0 t
. . .

. . .
. . .

. . .

−1 k 0 t
−1 k 0

0 −1 k


n×n

(9)

C(k, t) =



k 0 t 0
1 k 0 t

1 k 0 t
. . .

. . .
. . .

. . .

1 k 0 t
1 k 0

0 1 k


n×n

(10)

Definition 4.2. (Permanent of a matrix): Permanent of a square matrix A = [aij ]
is defined as
perA =

∑
σ∈Sn

∏n
i=1 aiσ(i), where the summation extends over all permutations σ

of the symmetric group Sn.

Definition 4.3. (Contraction of matrix): Let A = [aij ] be a square matrix of order
n and its column k contains exactly 2 non zero entries aik 6= 0 and ajk 6= 0 and
i 6= j. Then the matrix of order n − 1 obtained from matrix A by replacing row
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i with ajkri + aikrj and deleting row j and column k is called contraction of A on
column k relative to row i and row j. Similarly matrix can be contracted on row k.
Also if A is non negative matrix and B is a contraction of A then perA = perB.

Theorem 4.4. Let A(k, t) be a square matrix of order n defined as in equation (8).
Then per(A(k, t)) = Nn+2(k, t), where Nn+2(k, t) is the (n + 2)th (k, t)-Narayana
number.

Proof. Let Ar(k, t) be the rth contraction of matrix A(k, t).
Here Ar(k, t) is of order (n− r × n− r)
After contracting A(k, t) on first column

A1(k, t) =



k3 + t kt k2t 0
1 k 0 t

1 k 0 t
. . .

. . .
. . .

. . .

1 k 0 t
1 k 0

0 1 k


n−1×n−1

Again contracting A1(k, t) on its first column

A2(k, t) =



k4 + 2kt k2t k3t+ t2 0
1 k 0 t

1 k 0 t
. . .

. . .
. . .

. . .

1 k 0 t
1 k 0

0 1 k


n−2×n−2

After contracting A2(k, t) on first column

A3(k, t) =



k5 + 3k2t k3t+ t2 k4t+ 2kt2 0
1 k 0 t

1 k 0 t
. . .

. . .
. . .

. . .

1 k 0 t
1 k 0

0 1 k


n−3×n−3
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=



N6(k, t) tN4(k, t) tN5(k, t) 0
1 k 0 t

1 k 0 t
. . .

. . .
. . .

. . .

1 k 0 t
1 k 0

0 1 k


n−3×n−3

Continuing in this way, rth contraction of A(k, t) is

Ar(k, t) =



Nr+3(k, t) tNr+1(k, t) tNr+2(k, t) 0
1 k 0 t

1 k 0 t
. . .

. . .
. . .

. . .

1 k 0 t
1 k 0

0 1 k


n−r×n−r

Hence (n− 3)th contraction is

An−3(k, t) =

Nn(k, t) tNn−2(k, t) tNn−1(k, t)
1 k 0
0 1 k


An−3(k, t) can be contracted on column first

An−2(k, t) =

(
Nn+1(k, t) tNn−1(k, t)

1 k

)
So per(A(k, t)) = kNn+1(k, t) + tNn−1(k, t) = Nn+2(k, t) �

Theorem 4.5. Let C(k, t) be a square matrix of order n as defined in (10)
Then per(C(k, t)) = Nn+1(k, t), where Nn+1(k, t) is the (n + 1)th (k, t)-Narayana
number.

Proof. Proof is similar to Theorem 4.4. �

Theorem 4.6. Let B(k, t) be a square matrix of order n as defined in (9)
Then per(B(k, t)) = Nn+1(k, t), where Nn(k, t) is the nth (k, t)-Narayana number.

5. Sum of n terms of (k, t) Narayana numbers

In this section a new sequence Sn(k, t) sum of the first n terms of the (k, t)-
Narayana sequence is introduced. Its recurrence relation, generating function and
matrix relations are given.
Let Sn(k, t) =

∑n
i=0Ni(k, t) for all n ≥ 1, where Ni(k, t) are given by equations
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(3) and (4)
So S0(k, t) = 0, S1(k, t) = 1, S2(k, t) = k + 1

Theorem 5.1. Sn(k, t) satisfies the recurrence relation

Sn(k, t) = kSn−1(k, t) + tSn−3(k, t) + 1 for all n ≥ 3 (11)

with the initial conditions

S0(k, t) = 0, S1(k, t) = 1, S2(k, t) = k + 1, S3(k, t) = k2 + k + 1. (12)

Proof. The proof is given by induction on n.
For n = 3,

sS2(k, t) + tS0(k, t) + 1 = k(k + 1) + 0 + 1

= k2 + k + 1

= N3(k, t) +N2(k, t) +N1(k, t) +N0(k, t)

= S3(k, t)

Now suppose equation (11) holds for n = m
i.e. Sm(k, t) = kSm−1(k, t) + tSm−3(k, t) + 1
Now Theorem will be proved for n = m+ 1
i.e. we prove Sm+1(k, t) = kSm(k, t) + tSm−2(k, t) + 1
Sm+1(k, t) = Sm(k, t) +Nm+1(k, t)
By using induction hypothesis, we get

Sm+1(k, t) = kSm−1(k, t) + tSm−3(k, t) + 1 +Nm+1(k, t)

= kSm−1(k, t) + tSm−3(k, t) + 1 + kNm(k, t) + tNm−2(k, t)

= kSm(k, t) + tSm−2(k, t) + 1

So the equation (11) holds for all n ≥ 3. �

Theorem 5.2. (Generating function):
∑∞
n=0 Sn(k, t) =

z

(1− kz − tz3)(1− z)

Matrices relations of Sn(k, t)
Sn(k, t)
Sn−1(k, t)
Sn−2(k, t)

1

 =


k 0 t 1
1 0 0 0
0 1 0 0
0 0 0 1



Sn−1(k, t)
Sn−2(k, t)
Sn−3(k, t)

1



Sn(k, t)
Sn−1(k, t)
Sn−2(k, t)

1

 = Q


Sn−1(k, t)
Sn−2(k, t)
Sn−3(k, t)

1

,
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where Q =


k 0 t 1
1 0 0 0
0 1 0 0
0 0 0 1


By successive substitutions, we get
Sn(k, t)
Sn−1(k, t)
Sn−2(k, t)

1

 = Qn−2


S2(k, t)
S1(k, t)
S0(k, t)

1


Now Q2 =


k2 t st s+ 1
s 0 t 1
1 0 0 0
0 0 0 1



Q3 =


k3 + t kt k2t k2 + k + 1
k2 t kt k + 1
k 0 t 1
0 0 0 1

 (13)

Q4 =


k4 + 2kt k2t k3t+ t2 k4 + t+ k2 + k + 1
k3 + t kt k2t k2 + k + 1
k2 t kt k + 1
0 0 0 1


=


N5(k, t) tN3(k, t) tN4(k, t) S4(k, t)
N4(k, t) tN2(k, t) tN3(k, t) S3(k, t)
N3(k, t) tN1(k, t) tN2(k, t) S2(k, t)

0 0 0 1


Theorem 5.3.

Qn =


Nn+1(k, t) tNn−1(k, t) tNn(k, t) Sn(k, t)
Nn(k, t) tNn−2(k, t) tNn−1(k, t) Sn−1(k, t)
Nn−1(k, t) tNn−2(k, t) tNn−3(k, t) Sn−2(k, t)

0 0 0 1

 for all n ≥ 3. (14)

Proof. Proof is done by induction on n.
For n = 3, from equation (13),

Q3 =


k3 + t kt k2t k2 + k + 1
k2 t kt k + 1
k 0 t 1
0 0 0 1



=


N4(k, t) tN2(k, t) tN3(k, t) S3(k, t)
N3(k, t) tN1(k, t) tN2(k, t) S2(k, t)
N2(k, t) tN0(k, t) tN1(k, t) S1(k, t)

0 0 0 1
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Suppose equation (14) holds for n = m
Now for n = m+ 1,

Qm+1 = QmQ

=


Nm+1(k, t) tNm−1(k, t) tNm(k, t) Sm(k, t)
Nm(k, t) tNm−2(k, t) tNm−1(k, t) Sm−1(k, t)
Nm−1(k, t) tNm−2(k, t) tNm−3(k, t) Sm−2(k, t)

0 0 0 1



k 0 t 1
1 0 0 0
0 1 0 0
0 0 0 1


=

kNm+1(k, t) + tNm−1(k, t) tNm(k, t) tNm+1(k, t) Nm+1(k, t) + Sm(k, t)
kNm(k, t) + tNm−2(k, t) tNm−1(k, t) tNm(k, t) Nm(k, t) + Sm−1(k, t)
kNm−1(k, t) + tNm−3(k, t) tNm−2(k, t) tNm−1(k, t) Nm−1(k, t) + Sm−2(k, t)

0 0 0 1



=


Nm+2(k, t) tNm(k, t) tNm+1(k, t) Sm+1(k, t)
Nm+1(k, t) tNm−1(k, t) tNm(k, t) Sm(k, t)
Nm(k, t) tNm−1(k, t) tNm−2(k, t) Sm−1(k, t)

0 0 0 1


Hence by mathematical induction equation (14) holds for all n ≥ 3. �

Corollary 5.4. det(Pn) = det(Qn).

6. (k, t)-Narayana sequence for negative subscripts

We have to calculate terms backwards for negative subscripts. So, this section
introduces (k, t)-Narayana sequence for negative subscripts, their matrix expression
and Binet’s formula.

(k, t)−Narayana sequence for negative subscripts is defined as

N−n(k, t) =
N−n+3(k, t)− kN−n+2(k, t)

t
for all n ≥ 3

with the initial conditions N0(k, t) = 0, N−1(k, t) = 0, N−2(k, t) = t−1

{N−n(k, t)}∞n=0 =
{

0, 0, t−1, 0, −kt−2, t−2, k2t−3, −2kt−3, ...
}

Matrix relations

 N−n
N−n+1

N−n+2

 =

0 −kt−1 t−1

1 0 0
0 1 0

N−n+1

N−n+2

N−n+3


,

where R =

0 −kt−1 t−1

1 0 0
0 1 0

 and detR = t−1.
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By successive substitutions, we obtain N−n
N−n+1

N−n+2

 = Rn−2

N−2N−1
N0

 .

Theorem 6.1. Rn =

tN−n−2 tN−n−3 N−n−1
tN−n−1 tN−n−2 N−n
tN−n tN−n−1 N−n+1

 for all n ≥ 1.

Proof. We will prove by induction on n.

For n = 1, R =

0 −kt−1 t−1

1 0 0
0 1 0

 =

tN−3 tN−4 N−2
tN−2 tN−3 N−1
tN−1 tN−2 N0


Assume result is true for n = m.

Now we prove for n = m+ 1. That is to prove

Rm+1 =

tN−m−3 tN−m−4 N−m−2
tN−m−2 tN−m−3 N−m−1
tN−m−1 tN−m−2 N−m


Rm+1 = RmR

=

tN−m−2 tN−m−3 N−m−1
tN−m−1 tN−m−2 N−m
tN−m tN−m−1 N−m+1

0 −kt−1 t−1

1 0 0
0 1 0


=

tN−m−3 −sN−m−2 +N−m−1 N−m−2
tN−m−2 −sN−m−1 +N−m N−m−1
tN−m−1 −sN−m +N−m+1 N−m


=

tN−m−3 tN−m−4 N−m−2
tN−m−2 tN−m−3 N−m−1
tN−m−1 tN−m−2 N−m


So theorem holds for all n ≥ 1. �

Theorem 6.2. (Binet’s formula):

N−n =
α̃−n+1

(α̃− β̃)(α̃− γ̃)
+

β̃−n+1

(β̃ − γ̃)(β̃ − α̃)
+

γ̃−n+1

(γ̃ − α̃)(γ̃ − β̃)

where α̃, β̃ and γ̃ are the roots of the equation x3 − kx2 − t = 0.

Proof. Proof is similar to Theorem 3.4. �

7. Conclusion

This paper is devoted to the study of the (k, t)-Narayana sequence a gener-
alization of both classical Narayana sequence and k-Narayana sequence and also,
provides a lot of identities. Relations between terms of this sequence and Hessen-
berg matrices are given. Hessenberg matrices are used in inverse iteration, which



138 Roji Bala and Vinod Mishra

is a method to compute eigen vectors. In future, this sequence can be used in
applications areas like cryptography and in solution of Diophantine equations.
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