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Abstract. In this paper, the concepts of bounded and continuous n-linear opera-

tors in n-normed space are discussed. The notions of n-bounded and n-continuous

linear operators are then introduced as an extension. This is a generalization of the

concepts introduced in [9] and [3]. In addition, the properties of the corresponding

spaces of operators are studied to obtain results analogous to the case of normed

space. Finally, a sufficient condition for each corresponding space of operators to

be a Banach space is given.
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Abstrak. Di dalam makalah ini, konsep operator n-linear di dalam ruang n-norm

didiskusikan. Konsep operator linear n-terbatas dan n-kontinu kemudian diperke-

nalkan sebagai ekstensi. Ini adalah generalisasi dari konsep yang diperkenalkan di

[9] dan [3]. Selanjutnya, properti dari ruang operator yang berkaitan dipelajari un-

tuk mendapatkan hasil yang sesuai dengan kasus serupa di ruang norm. Akhirnya,

sebuah syarat cukup agar tiap-tiap ruang operator yang berkaitan menjadi ruang

Banach diberikan.

Kata kunci: ruang n-norm, ruang n-Banach, operator n-terbatas, operator n-
kontinu.

1. Introduction and Preliminaries

Let X be a real vector space with dim(X) ≥ n, where n is a positive integer. We
allow dim(X) to be infinite. A real-valued function ∥·, . . . , ·∥ : Xn → R is called an
n-norm on Xn if the following conditions hold:

(1) ∥x1, . . . , xn∥ = 0 if and only if x1, . . . , xn are linearly dependent;
(2) ∥x1, . . . , xn∥ is invariant under permutations of x1, . . . , xn;
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(3) ∥αx1, x2, . . . , xn∥ = |α|∥x1, x2, . . . , xn∥ for all α ∈ R and x1, . . . , xn ∈ X;
(4) ∥x0 + x1, x2, . . . , xn∥ ≤ ∥x0, x2, . . . , xn∥+ ∥x1, x2, . . . , xn∥, for all

x0, x1, . . . , xn ∈ X.

The pair (X, ∥·, . . . , ·∥) is then called an n-normed space. It also follows from the
definition that an n-norm is always non-negative.

A standard example of n-normed space isX = Rn equipped with the following
Euclidean n-norm:

∥x1, . . . , xn∥E := abs


∣∣∣∣∣∣∣
x11 · · · x1n

...
. . .

...
xn1 · · · xnn

∣∣∣∣∣∣∣
 ,

where xi = (xi1, . . . , xin) ∈ Rn for each i = 1, . . . , n.

An important example would be when X is equipped with an inner product
⟨·, ·⟩. In this case, we can define the standard n-norm on X by

∥x1, . . . , xn∥S :=
√

det[⟨xi, xj⟩]

Note that the value of ∥x1, . . . , xn∥S is just the volume of the n-dimensional paral-
lelepiped spanned by x1, . . . , xn.

Initially, the theory of 2-normed space was developed by Gähler [6] as an
extension of the usual norm. The theory of n-normed space was developed much
later by Misiak [11]. A survey of the theory of 2-normed space can be found in [5].
More recent work in various aspects can be found in [7, 8, 9, 10].

Familiar notions such as boundedness and continuity in 2-normed space were
then introduced by White in [12]. In [3], Chu et al. then defined the concepts
of 2-continuity and 2-isometry as extensions to the usual continuity and isometry
in 2-normed space for the purpose of studying the Aleksandrov problem. Related
papers in this direction can be found in [1, 2]. In [9], Gozali et al. also introduced
the notion of bounded n-linear functionals in n-normed space.

Motivated by all the concepts investigated in the above papers, we will intro-
duce the notions of n-bounded and n-continuous operator in this paper as further
extensions of the corresponding notions in [12], [9] and [3]. We will also study their
properties. Furthermore, we have the following well-known theorem.

Theorem 1.1. Let X and Y be normed spaces. Let B(X,Y ) be the space of all
bounded linear operators from X to Y . Then (B(X,Y ), ∥ · ∥) is a normed space,
where

∥T∥ := sup
x∈X,∥x∥=1

∥T (x)∥

Furthermore, if Y is a Banach space, then B(X,Y ) is a Banach space.

We will also present an extension of the above in the case of n-normed space.
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2. Continuous, Bounded n-Linear Operator

Throughout this section, let (X, ∥·, . . . , ·∥) be an n-normed space and (Y, ∥·∥)
be a normed space. Following is an extension of the notion of bounded n-linear
functional in n-normed space introduced in [9].

Definition 2.1. An operator T : Xn → Y is an n-linear operator on X if T is
linear in each of the variable.
An n-linear operator is bounded if there is a constant k such that for all (x1, . . . , xn) ∈
Xn,

∥T (x1, . . . , xn)∥ ≤ k∥x1, . . . , xn∥ (2.1)

If T is bounded, define ∥T∥ to be

∥T∥ := sup
∥x1,...,xn∦=0

∥T (x1, . . . , xn)∥
∥x1, . . . , xn∥

(2.2)

or equivalently

∥T∥ = sup
∥x1,...,xn∥=1

∥T (x1, . . . , xn)∥ (2.3)

Note that when n = 1, the above reduces to the usual notion of bounded
operator in normed space. Below is an example of such operator given in [9].

Example 2.2. Let X = Rn equipped with the Euclidean n-norm. Given the
standard basis {e1, . . . , en}, define F : X → R by F (x1, . . . , xn) = det[αij ], where
xi =

∑n
j=1 αijej , for i = 1, . . . , n. Then F is bounded with ∥F∥ = 1.

Proposition 2.3. Let T : Xn → Y be an n-linear operator. T is bounded if and
only if for all (x1, . . . , xn), (y1, . . . , yn) ∈ Xn,

∥T (x1, x2, . . . , xn)− T (y1, y2, . . . , yn)∥ ≤k(∥x1 − y1, x2, . . . , xn∥+ ∥y1, x2 − y2, . . . , xn∥
+ . . .+ ∥y1, y2, . . . , xn−1 − yn−1, xn∥
+ ∥y1, y2, . . . , yn−1, xn − yn∥) (2.4)

Proof. Suppose (2.4) holds. Take (y1, . . . , yn) = (0, . . . , 0), then the result follows.
Conversely if T is bounded, then using n-linearity and triangle inequality,

∥T (x1, . . . , xn)− T (y1, . . . , yn)∥
= ∥T (x1 − y1, x2, . . . , xn) + T (y1, x2 − y2, . . . , xn) + . . .+ T (y1, y2, . . . , xn − yn)∥
≤ ∥T (x1 − y1, x2, . . . , xn)∥+ ∥T (y1, x2 − y2, . . . , xn)∥+ . . .+ ∥T (y1, y2, . . . , xn − yn)∥
≤ k(∥x1 − y1, x2, . . . , xn∥+ ∥y1, x2 − y2, . . . , xn∥+ . . .+ ∥y1, y2, . . . , xn − yn∥)

as required. �

Observe that if T is a bounded n-linear operator, and x1, . . . , xn are linearly
dependent, then T (x1, . . . , xn) = 0.

The following gives equivalent formulae for ∥T∥.
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Proposition 2.4. Let T be a bounded n-linear operator. Then

∥T∥ = inf{k : ∥T (x1, . . . , xn)∥ ≤ k∥x1, . . . , xn∥, (x1, . . . , xn) ∈ Xn} (2.5)

= sup
∥x1,...,xn∥≤1

∥T (x1, . . . , xn)∥ (2.6)

= inf{k : (2.4) holds} (2.7)

The proof of the above is almost identical to that in [9]. The proof of (2.7)
is similar and is immediate from Proposition 2.3

Definition 2.5. An n-linear operator T : Xn → Y is continuous at (x1, . . . , xn) ∈
Xn if for all ε > 0, there is δ > 0, such that ∥T (x1, . . . , xn) − T (y1, . . . , yn)∥ < ε
whenever

∥x1 − y1, x2, . . . , xn−1, xn∥ < δ and ∥y1, x2 − y2, . . . , xn−1, xn∥ < δ and . . .

. . . and ∥y1, y2, . . . , xn−1 − yn−1, xn∥ < δ and ∥y1, y2, . . . , yn−1, xn − yn∥ < δ

OR

∥x1 − y1, y2, . . . , yn−1, yn∥ < δ and ∥x1, x2 − y2, . . . , yn−1, yn∥ < δ and . . .

. . . and ∥x1, x2, . . . , xn−1 − yn−1, yn∥ < δ and ∥x1, x2, . . . , xn−1, xn − yn∥ < δ

where (y1, . . . , yn) ∈ Xn.
T is continuous (on Xn) if it is continuous at each (x1, . . . , xn) ∈ Xn.

The above definition is an extension of that given by White in [12] for 2-
normed space. Note that when n = 1, the above reduces to the usual notion of
continuity in the normed space.

Next, we will relate the notion of boundedness and continuity.

Theorem 2.6. Let T : Xn → Y be an n-linear operator. The following statements
are equivalent:

(1) T is continuous.
(2) T is continuous at (0, . . . , 0) ∈ Xn.
(3) T is bounded.

Proof. (1) ⇒ (2) is trivial.
(2) ⇒ (3): Suppose T is continuous at (0, . . . , 0) ∈ Xn. Then by definition, there
is δ > 0 such that ∥T (u1, . . . , un)∥ < 1 whenever ∥u1, . . . , un∥ < δ. Now let
(x1, . . . , xn) ∈ Xn. First consider the case when ∥x1, . . . , xn∥ = 0. By the continu-
ity at (0, . . . , 0) ∈ Xn, note that there is δk > 0 such that ∥T (x1, . . . , xn)∥ <
1
k whenever ∥x1, . . . , xn∥ < δk. Then since ∥x1, . . . , xn∥ = 0 < δk, we have
∥T (x1, . . . , xn)∥ = 0, i.e. T ≡ 0. Next, if ∥x1, . . . , xn∥ ̸= 0, then let ui =(

δ
4∥x1,...,xn∥

)1/n

xi, for i = 1, . . . , n. Note that ∥u1, . . . , un∥ = δ/4 < δ. Then

∥T (u1, . . . , un)∥ =
δ

4∥x1, . . . , xn∥
∥T (x1, . . . , xn)∥
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Therefore

∥T (x1, . . . , xn)∥ =
4

δ
∥x1, . . . , xn∥∥T (u1, . . . , un)∥ ≤ 4

δ
∥x1, . . . , xn∥

Hence T is bounded.
(3) ⇒ (1): Since T is bounded, by Proposition 2.3,

∥T (x1, . . . , xn)− T (y1, . . . , yn)∥ ≤ ∥T∥(∥x1 − y1, x2 . . . , xn∥+ ∥y1, x2 − y2, . . . , xn∥+
. . .+ ∥y1, y2, . . . , xn − yn∥) (2.8)

Let ε > 0 be given. Take δ = ε
1+n∥T∥ . If each of the the term in the brackets on

the right-hand side of (2.8) is less than δ, then ∥T (x1, . . . , xn)−T (y1, . . . , yn)∥ < ε,
showing that T is continuous. �

Next, we will study the corresponding space of operators. Let B(Xn, Y )
denotes the space of all bounded n-linear operators from Xn into Y .

Theorem 2.7. (B(Xn, Y ), ∥ · ∥) is a normed space with norm given by (2.2).

Proof. We need to show that ∥ · ∥ defined in (2.2) is a norm.
It is clear from the definition of ∥ · ∥ that ∥αT∥ = |α|∥T∥. Also,

∥T1 + T2∥ ≤ sup
∥x1,...,xn∦=0

∥T1(x1, . . . , xn)∥+ ∥T2(x1, . . . , xn)∥
∥x1, . . . , xn∥

≤ sup
∥x1,...,xn∦=0

∥T1(x1, . . . , xn)∥
∥x1, . . . , xn∥

+ sup
∥x1,...,xn∦=0

∥T2(x1, . . . , xn)∥
∥x1, . . . , xn∥

= ∥T1∥+ ∥T2∥
Lastly, ∥T∥ = 0 implies T (x1, . . . , xn) = 0 if ∥x1, . . . , xn∥ ≠ 0. If ∥x1, . . . , xn∥ = 0,
then x1, . . . , xn are linearly dependent, hence T (x1, . . . , xn) = 0 by the observation
following Proposition 2.3. Hence T ≡ 0. Therefore, ∥ · ∥ is a norm. �

Finally, we have the following theorem which gives a sufficient condition for
(B(Xn, Y ), ∥ · ∥) to be a Banach space.

Theorem 2.8. If (Y, ∥ · ∥) is a Banach space, then (B(Xn, Y ), ∥ · ∥) is a Banach
space.

Proof. Let {Tk} be a Cauchy sequence in B(Xn, Y ). Let ε > 0 be given. Then
there exists N > 0 such that ∥Tk − Tm∥ ≤ ε/2 for all k,m > N . By definition, we
have

∥Tk(x1, . . . , xn)− Tm(x1, . . . , xn)∥ ≤ ∥Tk − Tm∥∥x1, . . . , xn∥ (2.9)

Therefore, for k,m > N , we have

∥Tk(x1, . . . , xn)− Tm(x1, . . . , xn)∥ ≤ ε

2
∥x1, . . . , xn∥ (2.10)

Using (2.9), since {Tk} is Cauchy and Y is a Banach space, we may define T (x) =
limk→∞ Tk(x). Then, there exists M > N such that

∥TM (x1, . . . , xn)− T (x1, . . . , xn)∥ ≤ ε

2
∥x1, . . . , xn∥ (2.11)
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Using (2.10) and (2.11), for all k > M ,

∥Tk(x1, . . . , xn)− T (x1, . . . , xn)∥ ≤ ∥Tk(x1, . . . , xn)− TM (x1, . . . , xn)∥
+ ∥TM (x1, . . . , xn)− T (x1, . . . , xn)∥

≤ ε∥x1, . . . , xn∥

This implies ∥Tk − T∥ < ε, i.e. Tk → T as required. It is easy to check that
T ∈ B(Xn, Y ), hence the statement is proven. �

3. n-Continuous, n-Bounded Linear Operator

We will now generalize the concept of bounded operator by introducing the
notion of n-bounded operator.

Throughout this section, let (X, ∥ · ∥) be a normed space and (X, ∥·, . . . , ·∥)
be an n-normed space.

Definition 3.1. An operator T : (X, ∥ · ∥) → (X, ∥·, . . . , ·∥) is n-bounded if there
is a constant k such that for all x1, . . . , xn ∈ X,

∥T (x1), x2, . . . , xn∥+ ∥x1, T (x2), . . . , xn∥+ . . .+ ∥x1, x2, . . . , T (xn)∥ ≤ k∥x1∥ . . . ∥xn∥

If T is an n-bounded operator, define ∥T∥n by

∥T∥n := inf{k : ∥T (x1), x2, . . . , xn∥+ ∥x1, T (x2), . . . , xn∥
+ . . .+ ∥x1, x2, . . . , T (xn)∥ ≤ k∥x1∥ . . . ∥xn∥, x1, x2, . . . , xn ∈ X}

(3.1)

Again note that when n = 1, the above definition reduces to the usual concept
of bounded operator. We will give some examples of such operator.

Example 3.2. Let X = R2 be equipped with the l1-norm and the Euclidean 2-
norm. Define operators T and T ′ by T ((x1, x2)) = (x1, x2) and T ′((x1, x2)) =
(0, x2), where (x1, x2) ∈ R2. Then ∥T∥2 = 2 and ∥T ′∥2 = 1.

Example 3.3. Let (X, ∥ · ∥) be a real inner product space and define ∥x, y∥ =

(∥x∥2∥y∥2−⟨x, y⟩2) 1
2 . If T : X → X is a bounded linear operator, then ∥T (x), y∥+

∥x, T (y)∥ ≤ 2∥T∥∥x∥∥y∥, and so T is a 2-bounded linear operator.

Below are some alternative formulae for ∥T∥n.

Proposition 3.4. Let T : X → X be an n-bounded linear operator. Then

∥T∥n = sup{∥T (x1), x2, . . . , xn∥+ ∥x1, T (x2), . . . , xn∥+ . . .+ ∥x1, x2, . . . , T (xn)∥
: x1, x2, . . . , xn ∈ X, ∥x1∥∥x2∥ . . . ∥xn∥ = 1} (3.2)

= sup

{
∥T (x1), x2, . . . , xn∥+ ∥x1, T (x2), . . . , xn∥+ . . .+ ∥x1, x2, . . . , T (xn)∥

∥x1∥∥x2∥ . . . ∥xn∥
: x1, x2, . . . , xn ∈ X, ∥x1∥∥x2∥ . . . ∥xn∥ ≠ 0} (3.3)
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Proof. Let M = {right-hand side of (3.2)}. Then clearly M ≤ ∥T∥n by definition
of n-bounded. Let yi =

xi

∥xi∥ for i = 1, . . . , n. Then we have ∥T (y1), . . . , yn∥+ . . .+

∥y1, . . . , T (yn)∥ ≤ M . This implies ∥T∥n ≤ M , and hence ∥T∥n = M .

Now let N = {right-hand side of (3.3)}. Then we have

∥T (x1), . . . , xn∥
∥x1∥ . . . ∥xn∥

+ . . .+
∥x1, . . . , T (xn)∥
∥x1∥ . . . ∥xn∥

=

∥∥∥∥T (
x1

∥x1∥

)
, . . . ,

xn

∥xn∥

∥∥∥∥
+ . . .+

∥∥∥∥ x1

∥x1∥
, . . . , T

(
xn

∥xn∥

)∥∥∥∥
Hence it follows that N ≤ M . Moreover, writing M as

M = sup

{
∥T (x1), x2, . . . , xn∥+ . . .+ ∥x1, x2, . . . , T (xn)∥

∥x1∥∥x2∥ . . . ∥xn∥
: ∥x1∥ . . . ∥xn∥ = 1

}
we see that M ≤ N as the set over which the supremum is taken is bigger for
N . �

We will now develop properties of n-bounded operator similar to that in
previous section. To do so, we introduce the concept of n-continuity.

Definition 3.5. Let T : (X, ∥ · ∥) → (X, ∥·, . . . , ·∥) be an operator. T is n-
continuous at x ∈ X if for all ε > 0, there is a δ > 0 such that

∥T (x1)− T (x), x2 − x, . . . , xn−x∥+ ∥x1 − x, T (x2)− T (x), . . . , xn − x∥+
. . .+ ∥x1 − x, x2 − x, . . . , T (xn)− T (x)∥ < ε

(3.4)

whenever ∥x1 − x∥∥x2 − x∥ . . . ∥xn − x∥ < δ, where x1, . . . , xn ∈ X.
T is n-continuous (on X) if it is n-continuous at each x ∈ X.

Note that when n = 1, the above notion reduces to the usual continuity in
normed space.

Theorem 3.6. Let T : (X, ∥·∥) → (X, ∥·, . . . , ·∥) be a linear operator. The following
statements are equivalent:

(1) T is n-continuous.
(2) T is n-continuous at 0 ∈ X.
(3) T is n-bounded

Proof. (1) ⇒ (2) is trivial.
(2) ⇒ (3): Suppose T is n-continuous at 0 ∈ X. Then by definition, there is a δ > 0
such that ∥T (u1), . . . , un∥ + . . . + ∥u1, . . . , T (un)∥ < 1 whenever ∥u1∥ . . . ∥un∥ <
δ. Let (x1, . . . , xn) ∈ Xn. If ∥x1∥ . . . ∥xn∥ = 0. Then ∥T (x1), . . . , xn∥ + . . . +

∥x1, . . . , T (xn)∥ = 0. If ∥x1∥ . . . ∥xn∥ ̸= 0, let ui =
(
δ
4

)1/n xi

∥xi∥ , for i = 1, . . . , n.

Note that ∥u1∥ . . . ∥un∥ < δ. Then we have

∥T (u1), . . . , un∥+ . . .+ ∥u1, . . . , T (un)∥

=
δ

4∥x1∥ . . . ∥xn∥
(∥T (x1), . . . , xn∥+ . . .+ ∥x1, . . . , T (xn)∥)
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Therefore

∥T (x1), . . . , xn∥+ . . .+ ∥x1, . . . , T (xn)∥

=
4∥x1∥ . . . ∥xn∥

δ
(∥T (u1), . . . , un∥+ . . .+ ∥u1, . . . , T (un)∥) <

4

δ
∥x1∥ . . . ∥xn∥

Hence T is n-bounded.
(3) ⇒ (1): Suppose T is n-bounded. Then

∥T (x1 − x), . . . , xn − x∥+ . . .+ ∥x1 − x, . . . , T (xn − x)∥ ≤ ∥T∥n∥x1 − x∥ . . . ∥xn − x∥

Let ε > 0 be given. Let δ = ε
1+∥T∥n

. Then by linearity of T ,

∥T (x1)− T (x), . . . , xn − x∥+ . . .+ ∥x1 − x, . . . , T (xn)− T (x)∥ < ε

whenever ∥x1 − x∥ . . . ∥xn − x∥ < δ. Hence T is n-continuous. �

Now we will study the corresponding space of operators. Let Bn(X,X) de-
notes the space of all n-bounded linear operators from (X, ∥ · ∥) to (X, ∥·, . . . , ·∥).

Theorem 3.7. (Bn(X,X), ∥ · ∥n) is a normed space with norm given by (3.1).

Proof. It is easier to check using the formula in (3.3) that ∥ · ∥n satisfies ∥αT∥n =
|α|∥T∥n and ∥T1 + T2∥n ≤ ∥T1∥n + ∥T2∥n.
Also, ∥T∥n = 0 implies ∥T (x1), . . . , xn∥ = 0 for all x1, . . . , xn ∈ X, hence T ≡ 0.
Therefore, (Bn(X,X), ∥ · ∥) is a normed space. �

In the following, we need the concept of n-Banach space. A treatment of
2-Banach space can be found in [12]. The notion of n-Banach space and related
concepts such as Cauchy sequence and convergence as given below are discussed
briefly in [7].

Definition 3.8. A sequence {xn} in an n-normed space (X, ∥·, . . . , ·∥) is said to
converge to an x ∈ X if

lim
k→∞

∥x1, . . . , xn−1, xk − x∥ = 0

for all x1, . . . , xn−1 ∈ X.

Definition 3.9. A sequence {xn} in an n-normed space (X, ∥·, . . . , ·∥) is a Cauchy
sequence if

lim
k,l→∞

∥x1, . . . , xn−1, xk − xl∥ = 0

for all x1, . . . , xn−1 ∈ X.

Definition 3.10. If every Cauchy sequence in an n-normed space (X, ∥·, . . . , ·∥)
converges to an x ∈ X, then X is said to be complete. A complete n-normed space
is called an n-Banach space.

Theorem 3.11. (Bn(X,X), ∥ · ∥n) is a Banach space if (X, ∥·, . . . , ·∥) is an n-
Banach space.
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Proof. Let {Tk} be a Cauchy sequence in Bn(X,X). Let ε > 0 be given. Then
there exists N > 0 such that ∥Tk −Tm∥n ≤ ε/2 for all k,m > N . By definition, we
have

∥(Tk − Tm)(x1), . . . , xn∥+ . . .+ ∥x1, . . . , (Tk − Tm)(xn)∥ ≤ ∥Tk − Tm∥n∥x1∥ . . . ∥xn∥
(3.5)

Therefore, for k,m > N , we have

∥Tk(x1)− Tm(x1), . . . , xn∥+ . . .+ ∥x1, . . . , Tk(xn)− Tm(xn)∥ ≤ ε

2
∥x1∥ . . . ∥xn∥

(3.6)

Since {Tk} is Cauchy, by definition of ∥ ·∥n, we have ∥Tk(x1)−Tm(x1), x2, . . . , xn∥,
. . . , ∥x1, x2, . . . , Tk(xn) − Tm(xn)∥ → 0 as k,m → ∞ for all x1, . . . , xn ∈ X. This
implies the sequence {Tk(x)} is Cauchy in (X, ∥·, . . . , ·∥) for all x ∈ X.
Since (X, ∥·, . . . , ·∥) is an n-Banach space, we may define T (x) = limk→∞ Tk(x) in
the sense of n-norm. By definition of convergence, there existsM = M(x1, . . . , xn) >
N such that

∥TM (x1)− T (x1), . . . , xn∥+ . . .+ ∥x1, . . . , TM (xn)− T (xn)∥ ≤ ε

2
∥x1∥ . . . ∥xn∥

(3.7)

for all x1, . . . , xn ∈ X.
Using (3.6) and (3.7) and triangle inequality for n-norm, for all k > M and
x1, . . . , xn ∈ X,

∥Tk(x1)− T (x1), . . . , xn∥+ . . .+ ∥x1, . . . , Tk(xn)− T (xn)∥ ≤ ε∥x1∥ . . . ∥xn∥

This implies ∥Tk − T∥n < ε, i.e. Tk → T as required. It is easy to check that
T ∈ Bn(X,X), hence the statement is proven. �

4. Other Notions of n-Continuous, n-Bounded Operator

There is another notion of continuity in n-normed spaces other than those
introduced in the previous sections. In [3], Chu et al. introduced the notion of
2-continuous mapping to study the Aleksandrov problem in 2-normed space. Mo-
tivated by this paper, we will generalize this concept.

Let (X, ∥·, . . . , ·∥) and (Y, ∥·, . . . , ·∥) be n-normed spaces.

Definition 4.1. An operator T : (X, ∥·, . . . , ·∥) → (Y, ∥·, . . . , ·∥) is n-bounded of
type-I if there is a constant k such that for all x1, . . . , xn ∈ X,

∥T (x1), . . . , T (xn)∥ ≤ k∥x1, . . . , xn∥

If T is an n-bounded of type-I operator, define [T ]n by

[T ]n := sup
∥x1,...,xn∦=0

∥T (x1), . . . , T (xn)∥
∥x1, . . . , xn∥

(4.1)

Below are some examples of such operator.



54 A. L. Soenjaya

Example 4.2. Let T : (X, ∥·, . . . , ·∥) → (Y, ∥·, . . . , ·∥) be a dilation, i.e. T (x) = cx
for all x ∈ X, where c ∈ R. Then T is n-bounded of type-I.

Example 4.3. Let X = C1[0, 1], equipped with 2-norm defined by ∥f, g∥ =
supt∈[0,1] W (f, g)(t) for f, g ∈ X, where W (f, g) is the Wronskian of f and g. Let

T : X → X be defined by T (x) = y, where y(t) = tx(t). Then ∥T (f), T (g)∥ ≤ ∥f, g∥
for all f, g ∈ X, and so T is 2-bounded.

Definition 4.4. Let T : X → Y be an operator. T is n-continuous of type-I at
x ∈ X if for all ε > 0, there is a δ > 0 such that

∥T (x1)− T (x), T (x2)− T (x), . . . , T (xn)− T (x)∥ < ε (4.2)

whenever ∥x1 − x, x2 − x, . . . , xn − x∥ < δ, where x1, . . . , xn ∈ X.
T is n-continuous of type-I (on X) if it is n-continuous of type-I at each x ∈ X.

When n = 1, the above reduces to the usual notion of continuity in normed
space. When n = 2, it reduces to the notion of 2-continuity introduced by Chu et
al. in [3].

Theorem 4.5. Let T : X → Y be a linear operator. Then the following statements
are equivalent:

(1) T is n-continuous of type-I.
(2) T is n-continuous of type-I at 0 ∈ X.
(3) T is n-bounded of type-I

Proof. (1) ⇒ (2) is trivial.
(2) ⇒ (3): Suppose T is n-continuous of type-I at 0 ∈ X. Then by definition
there is a δ > 0 such that ∥T (u1), . . . , T (un)∥ < 1 whenever ∥u1, . . . , un∥ < δ.
Now let x1, . . . , xn ∈ X. If ∥x1, . . . , xn∥ = 0, then x1, . . . , xn are linearly de-
pendent. By linearity of T , T (x1), . . . , T (xn) are also linearly dependent, hence

∥T (x1), . . . , T (xn)∥ = 0. Next, if ∥x1, . . . , xn∥ ̸= 0, let ui =
(

δ
4∥x1,...,xn∥

)1/n

xi, for

i = 1, . . . , n. Note that ∥u1, . . . , un∥ < δ. Then we have

∥T (u1), . . . , T (un)∥ =
δ

4∥x1, . . . , xn∥
∥T (x1), . . . , T (xn)∥

Therefore,

∥T (x1), . . . , T (xn)∥ =
4∥x1, . . . , xn∥

δ
∥T (u1), . . . , T (un)∥ <

4

δ
∥x1, . . . , xn∥

Hence, T is n-bounded of type-I.
(3) ⇒ (1): The proof is similar to the corresponding part in Theorem 3.6. �

We have shown that our notions of n-bounded of type-I and n-continuous
of type-I are equivalent. However, as our natural definition of [·] arising from the
above is not a norm, we could not have the analogue of Theorem 2.8 here.

Motivated by the definitions introduced in the previous section, we will mod-
ify the definitions slightly. Subsequently, let (X, ∥·, . . . , ·∥) be an n-normed space.



On n-bounded and n-continuous Operator 55

Definition 4.6. Let T : (X, ∥·, . . . , ·∥) → (X, ∥·, . . . , ·∥) be an operator. T is
n-bounded of type-II if there is a constant k such that for all x1, . . . , xn ∈ X,

∥T (x1), x2, . . . , xn∥+ ∥x1, T (x2), . . . , xn∥+ . . .+ ∥x1, x2, . . . , T (xn)∥
≤ k∥x1, x2, . . . , xn∥

(4.3)

If T is an n-bounded of type-II operator, define |||T |||n by

|||T |||n = sup

{
∥T (x1), x2, . . . , xn∥+ . . .+ ∥x1, x2, . . . , T (xn)∥

∥x1, x2, . . . , xn∥
, ∥x1, x2, . . . , xn∥ ̸= 0

}
(4.4)

Below is an example of such operator.

Example 4.7. Let T : X → X be a dilation, i.e. T (x) = cx for all x ∈ X, where
c ∈ R. Then T is n-bounded of type-II.

Definition 4.8. Let T : X → X be an operator. T is n-continuous of type-II at
x ∈ X if for all ε > 0, there is a δ > 0 such that

∥T (x1)− T (x), x2 − x, . . . , xn − x∥+ ∥x1 − x, T (x2)− T (x), . . . , xn − x∥+
. . .+ ∥x1 − x, x2 − x, . . . , T (xn)− T (x)∥ < ε

(4.5)

whenever ∥x1 − x, x2 − x, . . . , xn − x∥ < δ, where x1, . . . , xn ∈ X.
T is n-continuous of type-II (on X) if it is n-continuous of type-II at each x ∈ X.

Theorem 4.9. Let T : X → X be a linear operator. Then the following statements
are equivalent:

(1) T is n-continuous of type-II.
(2) T is n-continuous of type-II at 0 ∈ X.
(3) T is n-bounded of type-II.

Proof. (1) ⇒ (2) is trivial.
(2) ⇒ (3): The proof is similar to the corresponding part of Theorem 3.6. Suppose
T is n-continuous of type-II at 0 ∈ X. Then by definition, there is a δ > 0 such
that ∥T (u1), . . . , un∥ + . . . + ∥u1, . . . , T (un)∥ < 1 whenever ∥u1, . . . , un∥ < δ. Let

x1, . . . , xn ∈ X. Now, let ui =
(

δ
4∥x1,...,xn∥

)1/n

xi, for i = 1, . . . , n. Note that

∥u1, . . . , un∥ < δ. Then we have

∥T (u1), . . . , un∥+ . . .+ ∥u1, . . . , T (un)∥

=
δ

4∥x1, . . . , xn∥
(∥T (x1), . . . , xn∥+ . . .+ ∥x1, . . . , T (xn)∥)

Therefore

∥T (x1), . . . , xn∥+ . . .+ ∥x1, . . . , T (xn)∥

=
4∥x1, . . . , xn∥

δ
(∥T (u1), . . . , un∥+ . . .+ ∥u1, . . . , T (un)∥) <

4

δ
∥x1, . . . , xn∥
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Hence T is n-bounded of type-II.
(3) ⇒ (1): The proof is similar to the corresponding part of Theorem 3.6. �

We can now study the corresponding space of operators. Let Bn
n(X,X) de-

notes the space of all n-bounded of type-II linear operators from X to X.

Theorem 4.10. (Bn
n(X,X), ||| · |||n) is a normed space with norm given by (4.4).

Proof. The proof is similar to Theorem 3.7. �
Theorem 4.11. (Bn

n(X,X), ||| · |||n) is a Banach space if (X, ∥·, . . . , ·∥) is an n-
Banach space.

Proof. The proof is similar to Theorem 3.11 �
Remark 4.12. It appears that the type-I definition is somewhat more natural and
allows us to get a larger class of operator satisfying such conditions. On the other
hand, the type-II definition seems restrictive but allows us to get an analogue of
Theorem 2.8. Better definition which achieves these two remains to be seen.

Remark 4.13. Yet another way to resolve this in some special cases is by realizing
the n-normed space as a normed space via the method described in [7]. In par-
ticular for finite-dimensional case, the convergence and completeness in n-norm is
equivalent to that in the derived norm, and our results in section 3 can be used.

Acknowledgement We wish to thank the referee for the useful suggestions.
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