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Abstract. We first introduce quasi bi-slant Riemannian maps and study such Rie-

mannian maps from Lorentzian para Sasakian manifolds into Riemannian manifolds.

We give necessary and sufficient conditions for the integrability of the distributions

which are involved in the definition of the quasi bi-slant Riemannian map and in-

vestigate their leaves. We also obtain totally geodesic conditions for such maps.

Moreover, we provide some examples for this notion.
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1. Introduction

In differential geometry, there are so many important applications of Rie-
mannian maps in Mathematics and Physics [22]. The properties of slant Riemann-
ian maps became an interesting subject in differential geometry, both in complex
geometry and contact geometry. Differentiable maps between Riemannian mani-
folds are important in differential geometry. There are certain types of differentiable
maps between Riemannian manifolds whose existence influence the geometry of
source manifolds and target manifolds. The geometric structures defined on both
manifolds are compared by differentiable maps between Riemannian manifolds.
Basic maps in this manner are isometric immersions and Riemannian submersions.
Isometric immersions between Riemannian manifolds are characterized by their Ja-
cobian matrices and the induced metric which is symmetric positive definite bilinear
form. The theory of isometric immersions is an active research area and it plays an
important role in the development of modern differential geometry. On the other
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hand, the Riemannian submersions are also useful to compare geometric structures.
The theory of Riemannian submersions is also a very active research field for recent
developments.

In 1966, the theory of Riemannian submersions was initiated by O’ Neill
[14] and in 1967, A. Gray [8] extended this theory. Later, this theory was widely
studied by several geometers. Riemannian submersions are interesting and very
important in several areas of Riemannian geometry. In particular, the Riemann-
ian submersions have several important applications both in Mathematics and in
Physics because of their applications in supergravity and superstring theories [1],
Kaluza-Klein theory [3, 10], Yang-Mills theory [4] etc.

In 1992, the notion of Riemannian maps between Riemannian manifold was
introduced by Fischer [6] as a generalization of isometric immersions and Riemann-
ian submersions. Let F : (M, gM ) → (N, gN ) be a smooth map between Riemann-
ian manifold such that 0 < rankF <min{m,n}, where dimM = m and dimN = n.
Let we denote the kernel space of F∗ by kerF∗p at p ∈M. The tangent space of M
at p ∈M is given by

TpM = kerF∗p ⊕H,

whereH is orthogonal complementary space andH = (kerF∗p)
⊥ to kerF∗p in TpM.

We denote the range of F∗ by rangeF∗p at p ∈M and consider the orthogonal
complementary space (rangeF∗p)

⊥ to rangeF∗p in the tangent space TF(p)N of N.

As we know that rankF < min{m,n}, we always have (rangeF∗p)
⊥ ̸= {0}. Thus

the tangent space TF(p)N of N has the following decomposition

TF(p)N = (rangeF∗p)⊕ (rangeF∗p)
⊥.

Now, a differentiable map F : (M, gM ) → (N, gN ) is called Riemannian map at
p ∈ M if the horizontal restriction Fh

∗p : ( kerF∗p)
⊥ → (rangeF∗p) is a linear

isometry between the inner product spaces (( kerF∗p)
⊥, gM (p) | ( kerF∗p)

⊥) and
((rangeF∗p), gN (F(p)) | (rangeF∗p)). Therefore, Fischer defined in [6] that a Rie-
mannian map is a map which is isometric as it can be. It also follows that F∗
satisfies the equation

gN (F∗U,F∗V ) = gM (U, V ), (1)

for U, V ∈ H.
It follows that isometric immersions and Riemannian submersions are partic-

ular cases of Riemannian maps with kerF∗ = 0 and (rangeF∗)
⊥ = 0, respectively.

Since the Riemannian map is subimmersion, the rank of the linear map F∗p :
TpM → TF(p)N is constant for p in each connected component of M.

We note that a remarkable property of Riemannian maps is that a Riemann-
ian map satisfies the generalized eikonal equation ||F∗||2 = rankF , which is bridge
between geometric optics and physical optics. Riemannian maps have been also
studied in spacetime geometry under some regularity conditions [7].
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The theory of Lorentzian submersions was introduced by Magid [13] and
Falcitelli et al. [5]. In 2013, Gunduzalp and Sahin studied paracontact semi-
Riemannian submersions [9]. Recently, S. Kumar et al. [11] defined and studied
conformal semi-slant submersions from LP−Sasakian manifolds onto Riemannian
manifolds and R. Prasad et al, introduced quasi bi-slant Lorentzian submersions
from LP−Sasakian manifolds which generalizes hemi-slant, semi-slant and semi-
invariant Riemannian submersions [18].

Inspired from the good and interesting results of above studies, we introduce
the notion of quasi bi-slant Riemannian maps from LP−Sasakian manifolds into
Riemannian manifolds as a generalization of bi-slant Riemannian maps, quasi hemi-
slant Riemannian maps [16], slant Riemannian maps, semi-slant Riemannian maps
([2], [15], [12], [17]) and hemi-slant Riemannian maps.

In this research paper we tackle our work as follows: In the second section, we
present several main informations related to quasi bi-slant Riemannian maps. In
the third section, we give definition of LP−Sasakian manifolds and discuss certain
interesting outcomes on quasi bi-slant submersions from LP−Sasakian manifolds
into Riemannian manifolds. In the section 4 the geometry of leaves of distributions
that are involved in the definition of considered maps is studied and in section 5,
we give a necessary and sufficient condition for quasi bi-slant Riemannian maps to
be totally geodesic. Finally, in the last section 6, we construct some non-trivial
examples for considered maps.

2. Quasi bi-slant Riemannian maps

Let (M, gM ) and (N, gN ) be Riemannian manifolds and let F : (M, gM ) →
(N, gN ) be a smooth map. The differential map F∗ of F can be viewed as a section
of the bundle Hom(TM,F−1TN) → M, where F−1TN is the pullback bundle
with fibers (F−1TN)p = TF(p)N, p ∈ M. Hom(TM,F−1TN) has a connection

∇ induced from the Levi-Civita connection ∇M and the pullback connection. In
addition, the second fundamental form of F is given by

(∇F∗)(U, V ) = ∇F
UF∗(V )−F∗(∇M

U V ), (2)

for U, V ∈ Γ(TM).

The second fundamental form is symmetric [1] and Sahin in [19] showed that
the second fundamental form (∇F∗)(U, V ), ∀U, V ∈ Γ(TM), of a Riemannian map
has no components in rangeF∗.

Lemma 2.1. [21] Let F : (M, gM ) → (N, gN ) be a Riemannian map between
Riemannian manifolds. Then

gN ((∇F∗)(U, V ),F∗(W )) = 0,∀U, V,W ∈ Γ((kerF∗)
⊥).

As an outcome of Lemma 2.1, we get

(∇F∗)(U, V ) ∈ Γ((rangeF∗)
⊥).
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Let F : (M, gM ) → (N, gN ) be a Riemannian map between Riemannian
manifolds. The fundamental tensors T and A defined by O’Nill’s [14] for vector
field E and F on M such that

AEF = H∇M
HEVF + V∇M

HEHF, (3)

TEF = H∇M
VEVF + V∇M

VEHF, (4)

where ∇ is the Levi-civita connection on gM , V and H are the vertical and
horizontal projections, respectively. On the other hand, from equations (3) and
(4), we have

∇XY = TXY + ∇̂XY, (5)

∇XU = H∇XU + TXU, (6)

∇UX = AUX + V∇UX, (7)

∇UV = H∇UV +AUV, (8)

for all X,Y ∈ Γ(kerF∗) and U, V ∈ Γ(kerF∗)
⊥, where V∇XY = ∇̂XY. If U is

basic, then AUY = H∇UY.

It is easily seen that for p ∈M, Y ∈ Vp and U ∈ Hp the linear operators

TY ,AU : TpM → TpM,

are skew-symmetric, that is

gM (AUE,F ) = −gM (E,AUF ) and gM (TY E,F ) = −gM (E, TY F ), (9)

for all E,F ∈ TpM.We also see that the restriction of T to the vertical distribution
T is the second fundamental form of the fibres of f . Since TY is skew-symmetric,
we get F has totally geodesic fibres if and only if T = 0.

Definition 2.2. Let (M, ϕ, ξ, η, gM) be an almost contact metric manifold and
(N, gN ) be a Riemannian manifold. A Riemannian map F : (M, ϕ, ξ, η, gM) →
(N, gN ) is called a quasi bi-slant Riemannian map if there exist four mutually or-
thogonal distributions D,D1,D2 and < ξ > such that

kerF∗ = D ⊕D1 ⊕D2⊕ < ξ >, ϕ(D) = D, ϕ(D1) ⊥ D2, ϕ(D2) ⊥ D1.

The angle θ1 between ϕX and the space (D1)p is constant and independent of the
choice of the point p ∈ M and X ∈ (D1)p for any non-zero vector field X ∈ (D1)p.
Similarly, the angle θ2 between ϕZ and the space (D2)q is constant and independent
of the choice of the point q ∈ M and Z ∈ (D2)q for any non-zero vector field
Z ∈ (D2)q.

We give some examples of quasi bi-slant Riemannian maps.

Example 2.3. Every quasi bi-slant submersion from an almost Hermitian manifold
to a Riemannian manifold is a quasi bi-slant Riemannian map with (rangeF∗)

⊥ =
{0}.
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Example 2.4. Every quasi hemi-slant submersion from an almost Hermitian mani-
fold to a Riemannian manifold is a quasi bi-slant Riemannian map with (rangeF∗)

⊥ =
{0} and θ2 = π

2 .

We say that quasi bi-slant Riemannian map F : (M, ϕ, ξ, η, gM) → (N, gN )
is proper if θ1, θ2 ̸= 0, π2 .

Throughout in forthcoming sections of this paper, we take F : (M, ϕ, ξ, η, gM) →
(N, gN ) be a quasi bi-slant Riemannian map where (M, ϕ, ξ, η, gM) be an LP−Sasakian
manifold and (N, gN ) be a Riemannian manifold i.e., from now on we will de-
note a quasi bi-slant Riemannian map from a Lorentzian para Sasakian manifold
(M, ϕ, ξ, η, gM) onto a Riemannian manifold (N, gN ) by F .

3. Quasi bi-slant Riemannian maps from Lorentzian para Sasakian
manifolds

In this section we study the notion quasi bi-slant Riemannian maps from
LP-Sasakian manifolds onto Riemannian manifolds.

Definition 3.1. A (2m + 1) dimensional differentiable manifold M admitting a
(1, 1) tensor field ϕ, a contravariant vector field ξ, a 1−form η is called a Lorentzian
para Sasakian manifold with Lorentzian metric gM if they satisfy:

ϕ2 = I + η ⊗ ξ, ϕ ◦ ξ = 0, η ◦ ξ = 0, (10)

η(ξ) = −1, gM(X, ξ) = η(X), (11)

gM(ϕX, ϕY ) = gM(X,Y ) + η(X)η(Y ), gM(ϕX, Y ) = gM(X,ϕY ), (12)

∇Xξ = ϕX, (13)

(∇Xϕ)Y = η(Y )X + gM(X,Y )ξ + 2η(X)η(Y )ξ, (14)

where ∇ represents the operator of covariant differentiation with respect to the
Lorentzian metric gM. In a Lorentzian para Sasakian manifold, it is clear that

rank ϕ = 2m. (15)

Now, if we put

Φ(X,Y ) = Φ(Y,X) = gM(X,ϕY ) = gM(ϕX, Y ), (16)

then the tensor field Φ is symmetric (0, 2) tensor field, for any vector fields X and
Y.
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Example 3.2. [11] Let R2m+1 = {(x1, x2, ...., xm, y1, y2, . . . , ym, z) : xi, yi, z ∈
R, i = 1, 2, . . . ,m)}. Consider R2m+1 with the following structure:

ϕ

(
m∑
i=1

(
Xi

∂

∂xi
+ Yi

∂

∂yi

)
+ Z

∂

∂z

)
= −

m∑
i=1

Yi
∂

∂xi
−

m∑
i=1

Xi
∂

∂yi
+

m∑
i=1

Yiyi
∂

∂z
,

gR2m+1 = −(η ⊗ η) +
1

4

m∑
i=1

(dxi ⊗ dxi + dyi ⊗ dyi),

η = −1

2

(
dz −

m∑
i=1

yidxi

)
,

ξ = 2
∂

∂z
.

Then, (R2m+1, ϕ, ξ, η, gR2m+1) is a Lorentzian para-Sasakian manifold. The
vector fields Ei = 2 ∂

∂yi
, Em+i = 2( ∂

∂xi
+yi

∂
∂z ) and ξ form a ϕ−basis for the contact

metric structure.

Let F : (M, ϕ, ξ, η, gM) → (N, gN ) be a quasi bi-slant Riemannian maps.
Then we have

TM = kerF∗ ⊕ (kerF∗)
⊥. (17)

Now, for any vector field X ∈ Γ(kerF∗), we put

X = PX +QX +RX − η(X)ξ, (18)

where P,Q and R are projection morphisms of kerF∗ onto D,D1 and D2, respec-
tively.

For any vector field X ∈ Γ(kerF∗), we set

ϕX = ψX + ωX, (19)

where ψX ∈ Γ(kerF∗) and ωX ∈ Γ(ωD1 ⊕ ωD2).

From (18) and (19), we get

ϕX = ψ(PX) + ω(PX) + ψ(QX) + ω(QX) + ψ(RX) + ω(RX).

Since ϕD = D, therefore ωPX = 0. Hence we obtain

ϕX = ψ(PX) + ψQX + ωQX + ψRX + ωRX. (20)

Thus, we have

ϕ(kerF∗) = D ⊕ (ψD1 ⊕ ψD2)⊕ (ωD1 ⊕ ωD2), (21)

where ⊕ denotes orthogonal direct sum.

Further, let V ∈ Γ(D1) and W ∈ Γ(D2), then gM(V,W ) = 0. Now from the
Definition 2.2, we obtain gM(ϕV,W ) = gM(V, ϕW ) = 0.

Let Z ∈ Γ(D), Y ∈ Γ(D1) and X ∈ Γ(D2). Then, we have
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gM(ψY,Z) = 0,

gM(ψX,Z) = 0.

So, we can write ψD1 ∩ ψD2 = {0}, ωD1 ∩ ωD2 = {0}.
If θ2 = π

2 , then ψR = 0 and D2 is anti-invariant, i.e., ϕ(D2) ⊆ (kerF∗)
⊥. In

this case we denote D2 by D⊥.

We also have

ϕ(kerF∗) = D ⊕ ψD1 ⊕ ωD1 ⊕ ϕD⊥. (22)

Since ωD1 ⊆ (kerF∗)
⊥, ωD2 ⊆ (kerF∗)

⊥, so we can write

(kerF∗)
⊥ = ωD1 ⊕ ωD2 ⊕ V,

where V is orthogonal complement of (ωD1 ⊕ ωD2) in (kerF∗)
⊥.

Also for any V ∈ Γ(kerF∗)
⊥, we have

ϕV = CV +BV, (23)

where CV ∈ Γ(V) and BV ∈ Γ(kerF∗).

Lemma 3.3. Let F be a quasi bi-slant Riemannian map. Then we have

ψ2V +BωV = V + η(V )ξ,

ωψV + CωV = 0,

ωBW + C2W =W,

ψBW +BCW = 0

for all V ∈ Γ(kerF∗) and W ∈ Γ(kerF∗)
⊥.

Proof. By making use of the equations (10), (19) and (23), Lemma 3.3 follows. □

Lemma 3.4. Let F be a quasi bi-slant Riemannian map. Then, we have

(i) ψ2Vi = (cos2 θi)Vi,
(ii) gM(ψVi, ψWi) = cos2 θigM(Vi,Wi),
(iii) gM(ωVi, ωWi) = sin2 θigM(Vi,Wi), for all Vi,Wi ∈ Γ(Di) and i = 1, 2.

Proof. The proof of the above Lemma is the same as Lemma 3.2 of [18], therefore,
we omit its proof. □

Lemma 3.5. Let F be a quasi bi-slant Riemannian map. Then, we have

V∇XψY + TXωY − ψV∇XY −BTXY = gM(X,Y )ξ + η(Y )X + 2η(X)η(Y )ξ,

TXψY +H∇XωY = ωV∇XY + CTXY, (24)

V∇UBV +AUCV − gM(CU, V )ξ = ψAUV +BH∇UV, (25)

AUBV +H∇UCV = ωAUV + CH∇UV, (26)

V∇XBU + TXCU = ψTXU +BH∇XU, (27)

TXBU +H∇XCU = ωTXU + CH∇XU, (28)
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V∇V ψX +AV ωX = BAVX + ψV∇VX, (29)

AV ψX +H∇V ωX − η(X)V = CAVX + ωV∇VX (30)

for any X,Y ∈ Γ(kerF∗) and U, V ∈ Γ(kerF∗)
⊥.

Proof. By using the equations (5)− (8), (10), (11) and (14), we can easily get the
equations (24)− (30). □

Now, we define

(∇V ψ)W = V∇V ψW − ψV∇VW, (31)

(∇V ω)W = H∇V ωW − ωV∇VW, (32)

(∇XC)Y = H∇XCY − CH∇XY, (33)

(∇XB)Y = V∇XBY −BH∇XY (34)

for any V,W ∈ Γ(kerF∗) and X,Y ∈ Γ(kerF∗)
⊥.

Lemma 3.6. Let F be a quasi bi-slant Riemannian map. Then, we have

(∇V ϕ)W = BTVW − TV ωW + gM(V,W )ξ + 2η(V )η(W )ξ + η(W )V,

(∇V ω)W = CTVW − TV ψW,
(∇XC)Y = ωAXY −AXBY,

(∇XB)Y = ψAXY −AXCY + gM(X,Y )ξ,

for any V,W ∈ Γ(kerF∗) and X,Y ∈ Γ(kerF∗)
⊥.

Proof. By using the equations (25)− (28) and (31)− (34) Lemma 3.6 follows. □

Now, if the tensors ϕ and ω are parallel with respect to ∇ on M, then

BTVW = TV ωW − gM(V,W )ξ − 2η(V )η(W )ξ − η(W )V,

CTVW = TV ψW, for all V,W ∈ Γ(TM) .

4. Integrability conditions

In this section, we obtain necessary and sufficient conditions for quasi bi-slant
Riemannian maps to be integrable:

Theorem 4.1. Let F be a proper quasi bi-slant Riemannian map. Then the in-
variant distribution D is integrable if and only if

gM(TXϕY − TY ϕX,ωQZ + ωRZ) = −gM(V∇XϕY − V∇Y ϕX,ψQZ + ψRZ),

for all X,Y ∈ Γ(D) and Z ∈ Γ(D1 ⊕D2⊕ < ξ >).
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Proof. For X,Y ∈ Γ(D) and Z ∈ Γ(D1 ⊕ D2⊕ < ξ >), using equations (5),
(10)− (14), (18) and (19), we have

gM([X,Y ], Z) = gM(∇XϕY, ϕZ)− gM(∇Y ϕX, ϕZ)− η(Z)η(∇XY ) + η(Z)η(∇YX),

= gM(∇XϕY, ϕZ)− gM(∇Y ϕX, ϕZ),

= gM(TXϕY − TY ϕX,ωRZ + ωQZ)

+ gM(−V∇Y ϕX + V∇XϕY, ψQZ + ψRZ),

which completes the proof. □

Theorem 4.2. Let F be a proper quasi bi-slant Riemannian map. Then the slant
distribution D1 is integrable if and only if

gM(TWωψZ − TZωψW,U) = gM(TZωW − TWωZ, ϕPU + ψRU)

+ gM(H∇ZωW −H∇WωZ, ωRU)
(35)

for all Z,W ∈ Γ(D1) and U ∈ Γ(D ⊕D2⊕ < ξ >).

Proof. For all Z,W ∈ Γ(D1) and U ∈ Γ(D ⊕D2⊕ < ξ >), we have

gM([Z,W ], U) = gM(∇ZW,U)− gM(∇WZ,U).

By using the equations (5), (6), (10)− (14), (18) and (19) and Lemma 3.4, we have

gM([Z,W ], U) = gM(ϕ∇ZW,ϕU)− gM(ϕ∇WZ, ϕU),

= gM(∇ZϕW,ϕU)− gM(∇WϕZ, ϕU),

= gM(∇ZψW,ϕU) + gM(∇ZωW,ϕU)− gM(∇WψZ, ϕU)

− gM(∇ZωW,ϕU),

= cos2 θ1gM(∇ZW,U)− cos2 θ1gM(∇WZ,U)

+ gM(TZωψW − TWωψZ,U)

+ gM(H∇ZωW + TZωW,ϕPU + ψRU + ωRU)

− gM(H∇WωZ + TWωZ, ϕPU + ψRU + ωRU).

Now, we have

sin2 θ1gM([Z,W ], U) = gM(TZωW − TWωZ, ϕPU + ψRU)

+ gM(H∇ZωW −H∇WωZ, ωRU) + gM(TZωψW − TWωψZ,U),

which completes the proof. □

In a similar way, we have the following:

Theorem 4.3. Let F be a proper quasi bi-slant Riemannian map. Then the slant
distribution D2 is integrable if and only if

gM(TY ωψX − TXωψY,Z) = gM(H∇XωY −H∇Y ωX,ωQZ)

+ gM(TXωY − TY ωX, ϕPZ + ψQZ),
(36)

for all X,Y ∈ Γ(D2) and Z ∈ Γ(D ⊕D1⊕ < ξ >).
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5. Totally Geodesic conditions

In the present section, we obtain necessary and sufficient conditions for quasi
bi-slant Riemannian maps to be totally geodesic:

Proposition 5.1. Let F be a proper quasi bi-slant Riemannian map. Then the
vertical distribution (kerF∗) does not define a totally geodesic foliation on M.

Proof. Let X ∈ Γ(kerF∗) and Z ∈ Γ(kerF∗)
⊥, by using equation (13) we have

gM(∇Xξ, Z) = gM(ϕX,Z),

as gM(ϕX,Z) ̸= 0, so gM(∇Xξ, Z) ̸= 0. Hence, (kerF∗) does not define a totally
geodesic foliation on M. □

Theorem 5.2. Let F be a proper quasi bi-slant Riemannian map. Then the dis-
tribution (kerF∗)− < ξ > defines a totally geodesic foliation on M if and only
if

gM(TUPV + cos2 θ1TUQV + cos2 θ2TURV,X)

= −gM(H∇UωψQV +H∇UωψPV +H∇UωψRV,X)

− gM(TUωV,BX)− gM(H∇UωV,CX)

(37)

for all U, V ∈ Γ(kerF∗)− < ξ > and X ∈ Γ(kerF∗)
⊥.

Proof. For all U, V ∈ Γ(kerF∗)− < ξ > and X ∈ Γ(kerF∗)
⊥, using the equations

(11), (12) and (18) we have

gM(∇UV,X) = gM(∇UϕPV, ϕX) + gM(∇UϕQV, ϕX) + gM(∇UϕRV, ϕX).

Now, using equations (7), (8), (12), (18) and (19), Lemma 3.4, we have

gM(∇UV,X) = gM(TUPV,X) + cos2 θ1gM(TUQV,X) + cos2 θ2gM(TURV,X)

+ gM(H∇UωψPV +H∇UωψQV +H∇UωψRV,X)

+ gM(∇U (ωPV + ωQV + ωRV ), ϕX).

Now, since ωPV + ωQV + ωRV = ωV and ωPV = 0, thus we have

gM(∇UV,X) = gM(TUPV + cos2 θ1TUQV + cos2 θ2TURV,X)

+ gM(H∇UωψPV +H∇UωψQV +H∇UωψRV,X)

+ gM(TUωV,BX) + gM(H∇UωV,CX),

which completes the proof. □

Theorem 5.3. Let F be a proper quasi bi-slant Riemannian map. Then the hori-
zontal distribution (kerF∗)

⊥ does not define a totally geodesic foliation on M.

Proof. Let Z, V ∈ Γ(kerF∗)
⊥, using equation (13), we have

gM(∇ZV, ξ) = −gM(V,∇Zξ) = −gM(V, ϕZ),

as gM(V, ϕZ) ̸= 0, therefore gM(∇ZV, ξ) ̸= 0. Hence, (kerF∗)
⊥ does not define a

totally geodesic foliation on M. □
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Proposition 5.4. Let F be a proper quasi bi-slant Riemannian map. Then the
distribution D does not define a totally geodesic foliation on M.

Proof. For all U, V ∈ Γ(D), using equation (13), we have

gM(∇UV, ξ) = −gM(V, ϕU),

since gM(V, ϕU) ̸= 0, so gM(∇UV, ξ) ̸= 0. Hence D does not define a totally
geodesic foliation on M. □

Theorem 5.5. Let F be a proper quasi bi-slant Riemannian map. Then the dis-
tribution D⊕ < ξ > define a totally geodesic foliation if and only if

gM(TXϕPY, ωRZ + ωQZ) = −gM(V∇XϕPY, ψQZ + ψRZ), (38)

and
gM(TXϕPY,CV ) = −gM(V∇XϕPY,BV ), (39)

for all X,Y ∈ Γ(D⊕ < ξ >), Z = QZ +RZ ∈ Γ(D1 ⊕D2) and V ∈ Γ(kerF∗)
⊥.

Proof. For all X,Y ∈ Γ(D⊕ < ξ >), Z = QZ + RZ ∈ Γ(D1 ⊕ D2) and V ∈
Γ(kerF∗)

⊥, using equations (5), (10)− (14), (18) and (19), we have

gM(∇XY,Z) = gM(∇XϕY, ϕZ),

= gM(∇XϕPY, ϕQZ + ϕRZ),

= gM(TXϕPY, ωRZ + ωQZ) + gM(V∇XϕPY, ψQZ + ψRZ).

Now, again using equations (5), (10)− (14), (18) and (23), we have

gM(∇XY, V ) = gM(∇XϕY, ϕV ),

= gM(∇XϕPY,BV + CV ),

= gM(V∇XϕPY,BV ) + gM(TXϕPY,CV ),

which completes the proof. □

Proposition 5.6. Let F be a proper quasi bi-slant Riemannian map. Then the
distribution Di does not define a totally geodesic foliation on M, where i = 1, 2.

Proof. For all Z, V ∈ Γ(Di), using equation (13) we have

gM(∇ZV, ξ) = −gM(Z, ϕV ),

since gM(Z, ϕV ) ̸= 0, so gM(∇ZV, ξ) ̸= 0. Hence Di does not define a totally
geodesic foliation on M, where i = 1, 2. □

Theorem 5.7. Let F be a proper quasi bi-slant Riemannian map. Then the dis-
tribution D1⊕ < ξ > define a totally geodesic foliation if and only if

gM(TZωψW,X) = −gM(TZωW,ϕPX + ψRX)− gM(H∇ZωW,ωRX)

+ η(W )gM(Z, ϕPX + ψRX),
(40)

and

gM(H∇ZωψW,V ) = −gM(H∇ZωW,CV )− gM(TZωW,BV )

+ η(W )gM(Z,BV ),
(41)
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for all Z,W ∈ Γ(D1⊕ < ξ >), X ∈ Γ(D ⊕D2) and V ∈ Γ(kerF∗)
⊥.

Proof. For all Z,W ∈ Γ(D1⊕ < ξ >), X ∈ Γ(D ⊕D2) and V ∈ Γ(kerF∗)
⊥, using

equations (6), (10)− (14), (18), (19), and Lemma 3.4 we have

gM(∇ZW,X) = gM(∇ZϕW,ϕX)− η(W )gM(Z, ϕX)

= gM(∇ZψW,ϕX) + gM(∇ZωW,ϕX)− η(W )gM(Z, ϕPX + ψRX),

= cos2 θ1gM(∇ZW,X) + gM(TZωψW,X)

+ gM(TZωW,ϕPX + ψRX) + gM(H∇ZωW,ωRX)

− η(W )gM(Z, ϕPX + ψRX).

Now, we have

sin2 θ1gM(∇ZW,X) = gM(TZωψW,X) + gM(TZωW,ϕPX + ψRX)

+ gM(H∇ZωW,ωRX)− η(W )gM(Z, ϕPX + ψRX)

Next, from equations (6), (10)− (14), (18), (19), and Lemma 3.4 we have

gM(∇ZW,V ) = gM(∇ZϕW,ϕV )− η(W )gM(Z, ϕV ),

= gM(∇ZψW,ϕV ) + gM(∇ZωW,ϕV )− η(W )gM(Z, ϕV ),

= cos2 θ1gM(∇ZW,V ) + gM(H∇ZωψW,V )

+ gM(H∇ZωW,CV ) + gM(TZωW,BV )− η(W )gM(Z,BV ).

Now, we have

sin2 θ1gM(∇ZW,V ) = gM(H∇ZωψW,V ) + gM(H∇ZωW,CV ) + gM(TZωW,BV )

− η(W )gM(Z,BV ),

which completes the proof. □

In a similar way, we can easily prove the following:

Theorem 5.8. Let F be a proper quasi bi-slant Riemannian map. Then the dis-
tribution D2⊕ < ξ > define a totally geodesic foliation if and only if

gM(TXωψY,Z) = gM(TXωQY, ϕPZ + ϕRZ) + gM(H∇XωQY, ωRZ)

+ η(Y )gM(X,ϕPZ + ψRZ),

gM(H∇XωψY, V ) = −gM(H∇XωY,CV )− gM(TXωY,BV ) + η(Y )gM(X,BV ),

for all X,Y ∈ Γ(D2⊕ < ξ >), Z ∈ Γ(D ⊕D1) and V ∈ Γ(kerF∗)
⊥.

By using Proposition 5.1 and Theorem 5.3, one can give the following theo-
rem:

Theorem 5.9. Let F be a proper quasi bi-slant Riemannian map. Then the map
F is not a totally geodesic map.
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6. Example

Example 6.1. Let R9 be a LP-Sasakian structure (as in Example 3.2) and F :
R9 → R4 be a map defined by

F(x1, ..., x4, y1...., y4, z) = (a, cos θ1x3 + sin θ1x4, sin θ2y2 − cos θ2y3, b)

where a, b ∈ R. Then F is quasi bi-slant Riemannian map such that

D =< 2

(
∂

∂x1
+ y1

∂

∂Z

)
, 2

∂

∂y1
>,

D1 =< 2

[
sin θ1

(
∂

∂x3
+ y3

∂

∂Z

)
− cos θ1

(
∂

∂x4
+ y4

∂

∂Z

)]
, 2

∂

∂y4
>,

D2 =< 2

(
∂

∂x2
+ y2

∂

∂Z

)
, 2

[
cos θ2

∂

∂y2
+ sin θ2

∂

∂y3

]
>,

< ξ > =< 2
∂

∂z
>,

(kerF∗)
⊥ =< V1 = 2

[
cos θ1

(
∂

∂x3
+ y3

∂

∂z

)
+ sin θ1

(
∂

∂x4
+ y4

∂

∂z

)]
,

V2 = 2

[
sin θ2

∂

∂y1
− cos θ2

∂

∂y2

]
>,

with bi-slant angles θ1 and θ2. Also by direct computations, we obtain

F∗V1 = 2
∂

∂v2
, F∗V2 = 2

∂

∂v3
.

Hence, we get

gR9(V1, V1) = gR4(F∗V1,F∗V1), gR9(V2, V2) = gR4(F∗V2,F∗V2).

Example 6.2. Let R9 be a LP-Sasakian structure (as in Example 3.2.) and F :
R9 → R4 be a map defined by

F(x1, . . . , x4, y1, . . . , y4, z) =

(
a,

√
3x2 + x3

2
, b,

y2 − y4√
2

)
where a, b ∈ R. Then F is quasi bi-slant Riemannian map such that

D =<
∂

∂x1
+ y1

∂

∂z
,
∂

∂y1
>,

D1 =<

(
∂

∂x2
+ y2

∂

∂z
−
√
3

(
∂

∂x3
+ y3

∂

∂z

))
,
∂

∂y3
>,

D2 =<
∂

∂x4
+ y4

∂

∂z
,

(
∂

∂y2
+

∂

∂y4

)
>,

< ξ > =< 2
∂

∂z
>,

with bi-slant angles θ1 = π
3 and θ2 = π

4 .

It can be easily seen that Theorem 5.3 is satisfied by the Examples 6.1 and
6.2.
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